

Millimetre-wave lens aerial

Direct frequency synthesizer

Guide to light units

Some of the TYLOMAN PRODUCTS RANGE

wireless world

DECEMBER 1981 70p

WIRELESS WORLD DECEMBER 1981 VOL 87 NO 1551

CMillimetre-wave
tens aerial
Direct frequency
synthesizer
Guide to light units

Autoranging rif. millivoltmeter

wireless world

DECEMBER 1981 Vol 87 No 1551

31
MILLIMETRE-WAVE LENS AERIALS
2 by K. L. Smilh
THE FUNCTION OF FUNCTIONS DIRECT DIGITAL FREQUENCY SYNTHESIZER by J. H. J. Dawson NEWS OF THE MONTH WORLD OF AMATEUR RADIO

CURRENT MIRRORS, AMPLIFIERS AND DUMPERS by B. Wilson
51 LETTERS TO THE EDITOR
IEW BBC/OU PRODUCTION CENTRE OPENS
by Donald Aldous
Fusible link p.r.o.m. programmer
MORE LIGHT ON OBSCURE UNTS
by J. C. A. Chaimowicz
63 MULTICHANNEL DIGITAL TAPE RECORDER
DISPLACEMENT CURRENT
71 INTERFACING MICROPROCESSORS
by J. D. Ferguson, J. Stewar and P, w,lams
76 by M. L. Christieson

bucatig engineers

EW P
88 Waves

ELECTRONIC KITS

Velleman U.K. present their list of electronic kits together with prices which include V.A.T. and postage and packing. They are listed in "difficulty grades", for beginners and experienced kit-builders, with the lower skill packaged in clear plastic boxes, ideal for component storage. packaged in clear plastic boxes, ideal for component storage.
REMEMBER - We offer a free soldering iron with your first order over $£ 10$
The Profersional Choice
 Amcron

Since the introduction of the DC300 in 1967, AMCRON amplifiers have been used worldwide - wherever there has been a need for a rugged and reliable amplifier. Their reputation amongst professional users, throughout amplification. For power you can depend on - choose AMCRON, the professional choice.
For further details contact the UK Industrial distributor:

G.A.S. ELECTRONICS

16, ST. ALFEGE PASSAGE, LONDON SE10
TELEPHONE: 01-853 5295
TELEX: 923393 LASER G

The Profersional Choice

Amcron

Since the introduction of the DC300 in 1967, AMCRON amplifiers have been used worldwide - wherever there has been a need for a rugged and reliable amplifier. Their reputation amongst professional users, throughout industry, has made the name of AMCRON synonymous with power professional choice.
For further details contact the UK Industrial distributor
G.A.S. ELECTRONICS

16, ST. ALFEGE PASSAGE, LONDON SE10
TELEPHONE: 01-853 5295
TELEX: 923393 LASER G

WW - 034 FOR FURTHER DETAILS

ELECTRONIC KITS

velleman U.K. present their list of electronic kits together with prices which inc/ude V.A.T. and postage and packing. They are listed in "difficulty grades", for beginners and experienced kit-builders, with the lower skill packaged in clear plastic boxes, ideal for component storal full instructions and technical data and come to you packaged in clear plastic boxes, ideal for component storage.
REMEMBER - We offer a free soldering iron with your first order over $£ 10$
Send today for the free Velleman Kit Journal
Difficulty Grade: 1 K611 7W Amplifier ...
K613 Dimmer 1000W
K1771 20W Amplifier.
K1803 FM Oscillat
K1803 Universal
K1823 1A Power Supply
K1861 Power Supply for K2565 Tape/Slide
K2566 Coloured Light
K2566 Coloured Light
K2569 Three-tone Bell
P2570 Power Supply,
$5-14 \mathrm{~V}$ DC 1A
$k 2572$ Universal Stereo
K2573 Stereo RIAA
Microprocessor
Doorbell with
$\kappa 2579$ Universal

Difficulty Grade: 2 Stereo VU
using LED's K1804 60W Amplifier K1854 Running Light U $k 2550$ Infra-red Detection

K2571 Light Computer

K607 2.2W Mini Amplifier
(Deparasite).

2542 60W Stereo..
K2542 Single digit counte
2544 Complex Sound
K2566 CB Power Supply

2575 Corrector Amplifie 26 tunes

K610 MonoVUusingLED's 2543 Transistor Ignition 2549 Infra-red Detection System

2553 System (Receiver) 12.42
K2553 FM Stereo Decoder 11.49
2557 Digital Precision
K2574 Four-digit up/down counter with comparator
K2576 40W Audio Amplifier
Speed Control

K255

Difficulty Grade: 3 $K 615$ High Precision K1682 Microprocessor K2545 50 Hz Crystal $\quad 48.37$11.39

time Base
K2547 Four-channel Infra-redRemote Control
(Transmitter) $\ldots 17.32$
Four-channel Infra-red K2548 $\begin{aligned} & \text { Four-channel Infra-red } \\ & \text { Remote Control } \\ & \text { (Receiver) }\end{aligned} \quad . . \quad 23.12$ $K 2551 \begin{gathered}\text { (Receiver)... } \\ \text { Infra-red }\end{gathered}$ Infra-red Central
K2554 High-quality
2555 FM Tuner
2555 Digital Frequency ... 22.67
$K 2558$ FM Ster for Receiver 37.74
with housing
K2559
Two-channel IR Remote Controlled Light Dimmer
(Transmitter) $\ldots 17.32$ K2560 Two-channel IR Remote Controlled Light Dimmer (Receiver) 38.64 K2562 Infra-red Receiver
K2563 Infra-red Transmitter
2567 for K2558
18.11
(Common Anode) 21.05
2568 20CM Display (Common
K2578 Microprocessor
Controlled EPROM
Programmer....... 241.50
Ch 5 Soldering iron
order of $\mathrm{f1O}$
or over
حVELLEMAN UK.
6.57 P.O. Box 30, St. Leonards-on-Sea, East Sussex TN37 7NL Tel: Hastings 104241753246

34
34.16 Name

Address
7.59
 Speed Control

CURRENT USED

Everything as new-

 mod. ftequency 12200.00

5GOOD REASONS WHY YOU

Brokers TEST EQUIPMENT except the pricel

Radiometer SMGIC Stereo Generator. Internal or external modulator. 100 MHz carrier at $10 \mathrm{mV}-100 \mathrm{mV}$. $£ 375.00$	Phillips PM3212 Dual Trace Portable DC-25MHz 2mV-10V/div. $£ 495.00$	Marconi TF2603 R.F. Electronic Millivoltmeter 1 mV - 3 V r.m.s. in 8 ranges $50 \mathrm{KHz}-$ 1500MHz Supplied with accessories in case $\mathbf{\Sigma 5 2 5 . 0 0}$	Marconi TF995B/2 unused condition. AM/FM Signal Generator $200 \mathrm{KHz}-220 \mathrm{MHz}$. $1 \mu \mathrm{~V}$-200mV. 75 KHz deviation on FM
	2.2002 BMMF M. Siqmal Gencrator. IOKtw frequency	92IAPAL Vectorscope Measures Lummance Ampitude Chrominance Phase, Chrommance 2650	errograph 152 Recorder vest Set Measures Waw è Futter Distovtom. Gain345,00
SIGNAL SOURCES 		TRANSMISSION MEASURING EOUIPMENT	Fluke 3010A Logictester Self-contained portable NEW PRICE ca $£ 1400$. Full specification on request ... $£ 8500.0$
		T172343 Ouannazacic Distomion Tester E600.00	
	PMS456. steree Generator. Separate L. .and R Radiometer SAGI Stereo Cencrator or R Chanee internal 	 	
	SOUND LEVEL METERS Bruel 8 kjaer 		
Marcomi 	General Radlo. and analonue read Meter, 70120 dB . Digita 		(1) Phallos
 	T.V.TEST EQUIP shor	MISCELLANEOUS rruel and KJaer. 	

New test
equipmen equipment
catalogue just catalogue just
out. Send for your free copy now. serma

Electronic Brokers Limited 61/65 Kings Cross Road London WC1X 9LN England Telephone: 01-278 3461 Telex: 298694 Elebro G

NEW FROM THE ONE-OFF SHOP

12/24 L.C.D. CLOCK MODULE Features a $0.5^{\prime \prime}$ L.C.D. 2 isplay, user selectable dual time, alarm, 24 minute stop watch, sleep and timer contr unctions. The display shows A, P and alarm annunciations. An incandescent lamp back bulb is also fitted. It is supplied complete with bezel at
HEAT SINKS
An extensive range of heat sinks manuactured by Redpoint is now available in the "one off" prices plus discounts. The range covers every type of popular semiconductor package including TO5, TO3, TO220, TO126, TV1500, TO18 and a special sink for dual-inline devices up to 16 pin which does no equire adhesive. All types are black anodised.

DIODES

[12: 74
Diodes complement the already extensive range of semiconducting devices supplied by Verospeed. Manufactured by Diodes Inc. the comprehensive range includes IN4000 and IN5400 series, 1 amp and 3 amp fast recovery diodes, 1A, 2A, 3A, 6A, 15A, and 35A silicone bridge rectifiers. All types have an extremely high reputation for reliability and are very and for the published discount catalogue prices. ook for these - and lots more in ots more in THE ONE-OFF SHOP Send for your copy. Test our
service by phoning 0703618525 service by phoning 0703618525 catalogue will be in the
post tonight
post tonight

Britain's fastest growing distributor of branded electronic components
Ww - 029 FOR FURTHER DETAILS

Britains No.I magazine for the radioenthusiast
From the June issue, Practical Wireless becomes an "all radio"" magazine, covering all the techniques and
applications of radio, including licensed amateur radio, aport-wave listening, DX (long-distance) broadcast listening and viewing, radio control, etc., plus the latest developments on the CB scene.

METER PROBLEMS?

137 Standard Ranges in a variety of sizes and stylings available for $10-14$
days delivery. Other Ranges and special scales can be made to order.
ull Information from:
HARRIS ELECTRONICS (London) 138 GRAYS INN ROAD. W.C. 1 phone: 01183717937 138 GRAYS INN ROAD. W.C. HARTRON

Sinclair 2X81 Personal Computerthe heart of a system that grows with you.

1980 saw a genuine breakthrough the Sinclair ZX80, world's first com plete personal computer for under
$£ 100$. Not surprisingly were sold surprisingly, over 50,000 in Mar increased dramatically. For just $£ 69.95$ the Sinclair ZX81 offers eve more advanced facilities at an even ower price. Initially, even we were 50,000 in the first 3 months! Today, the Sinclair ZX81 is the heart of a computer system. You can add 16-times more memory with the ZXRAM pack. The ZX Printer offers an unbeatable combination of Software library is growing every day Lower price: higher capability With the ZX81, it's still very simple to teach yourself computing, but the ZX81 packs even greater working capability than the ZX80.
It uses the same micro-processor but incorporates a new, more pow
ful 8 KASIC ROM - the 'trained intelligence' of the computer. This chip works in decimals, handles logs and trig, allows you to plot graphs, and builds up animated displays.
And the ZX81 incorporates othe operation refinements - the facility
to load and save named programs on cassette, for example, and to drive the new ZX Printer.

New BASIC manual

Kit:

 £49.95
Higher specificat
 how's it done?

 Quite simply, by design. The ZX80 computer from 40 in a working ZX81 reduces the 21 to $4!$ The secret lies in a totallymaster chip. Designed by Sinclair and custom-built in Britain, this unique chip replaces 18 chips from the ZX80!
New, improved specification Z80A micro-processor - new
faster version of the famous $\mathrm{Z80}$ chip, widely recognised as the best ever made.
Unique 'one-touch' key word entry: the ZX81 eliminates a great deal of tiresome typing. Key words
(RUN LIST PRINT etc.) have their own single-key entry. - Unique syntax-check and report codes identify programming errors immediately.

- Full range of mathematical and scientific functions accurate to eigh - Graph-drawin
display facilities
- Multi-dimensional string and
- Up to 26 FOR/NEXT loops. games as well as serion - useful for - Cassette LOAD and SAVE with named programs.
- 1K-byte RAM expandable to 16 K bytes with Sinclair RAM pack. Able to drive the new Sinclar Adva
processor, ROM R-chip design: microchip - unique, custom-built chip replacing 18 ZX80 chips.

£69.95

Kit or built -it's up to you! You'll be surprised how easy the ZX81 kit is to build: just four chips to assemble (plus, of course the other work with a fine-tipped soldering iron And you may already have a suitable mains adaptor -600 mA at 9 VDC nominal unregulated (supplied with built version).
Kit and built versions come com plete with all leads to connect to your TV (colour or black and white)

16K-byte RAM

pack for massive
add-on memory.
Designed as a complete module to fit your Sinclair ZX80 or ZX81, the RAM pack simply plugs into the existing expansion port at the rear of the computer to multiply
data/program storage by $16!$ data/program storage by Use it for long and complex programs or as a personal database Yet it costs as little as half the price of competitive additional memory. With the RAM pack, you can cated ZX Software - the Business \& Household management systems for example.

Gir

 ZX8Tel: (0276) $66104 \AA 21282$.

Available now-

 the IX Printerfor only £49.5
Designed exclusively for use with the ZX81 (and ZX80 with 8K BASI numerics and highly sophisticated graphics.
Araphics.
A special feature is COPY, which prints out exactly what is on the whole TV screen without the need or further intructions
At last you can have a hard cop of your program listings-particularly
How to order your $\mathbf{Z X} 81$ HY PHONE - Access, Barclaycard or Trustcard holders can call 01-200 0200 for personal attention 24 hours a day, every day. BY FREEPOST - use the no-stampneeded coupon below. You can pay
To: Sinclair Research Ltd, FREEPOST 7, Cambridge, CB2 1 YY .

ww - 052 FOR FURTHER DETALLS
useful when writing or editing And of course you can print out your result's for permanent records your sending to a friend.

Printing speed is 50 characters per second, with 32 characters per
ine and 9 lines per vertical inch. The ZXPrinter connects to the rear of your computer - using a stackable connector so you can plug in a Rt long $x 4$ in wide) is supplied, along with full instructions.
by cheque, postal order, Access Barclaycard or Trustcard.
Barclaycard or Trustcard.
EITHER WAY - please allow to 28 days for delivery. And there's a 14 -day money-back option. We wan you to be satisfied beyond doubt and we have no doubt that you will be

Data recording and analysis:

If everything were perfect...

It is rarely necessary to have to boost the bass response of a top quality high fidelity system, (although the Quad 44 tilt control does enable subtle changes to be made to the overall balance of the programme), but there are a number of high quality loudspeakers on the market, which because of their Lilliputian dimensions, necessarily have attenuated low frequency response and the Quad 44 is fitted with a bass control which in the lift position provides optimum equalisation.

Considerations of domestic harmony frequently dictate loudspeaker placement that is less than ideal. The almost inevitable result is the excitation of the fundamental eigentones of the room and music reproduction
with a
characteristic and unpleasant honk.

The step side of the Quad 44 bass control switch eliminates this problem without rolling off the low putting a 5 dB step in the fimply by response reproducing requency response, reproducing domestic bliss and a closer approach to the
original sound! original sound
To learn all about the Quad 44 write or telephone for a leaflet.

The Acoustical Manufacturing Co. Ltd., Huntingdon PE18 7DB. Telephone: (0480) 52561.

QUAD ${ }^{\text {畨 }}$
 for the closest approach

 to the original sound

If you need to record and analyse data analogue and digital inputs from most from multiple inputs, consider the advantages of using the Microdat 1600L data logger

Magnetic tape cartridge Because records on a standard $1 / 4$ inch magnetic tape cartridge in ECMA/ANSI format, the output can be replayed at high speed into a computer, calculator or other data internal replay facility of the data logge can be used. No other data logger has thi capability.

Individual conditioning cards , plug-in signal conditionin cards are used-one for each of the 20 input channels (expandable up to 100). As a result, each customer receives a bespok
instrument ready to handle mixed transducers. Cards are available at low cost to condition virtually every type of electrical signal, to reconfigure the instrument for different projects. Exceptional versatility The M1600L is available either as a mains powered, free-standing, laboratory instrument orin
the portable weatherproof form operating from its internal batteries. For more permanent installation in existing systems, it can be supplied in chassis form
for mounting in a 19 inch rack. No other for mounting in a 19 inch rack. No other
data logger displays this versatility. The M1600L is now widely adopte for projects in energy, transportation, agricultural and environmental research
$\mathrm{MRCR}(\mathrm{O}$ (ATA-leaders in the field
WW - 022 FOR FURTHER DETAILS

meet the time shrinker!
advertisephone, or return this advertisement clipped to your
letterheading terheading.
MICRODATALIMITED, MONITOR HOUSE, STATIONROAD, RADLETT, HERTS. WD7 8JX,

WIRELESS WORLD DECEMBER 198

WIRELESS WORLD DECEMBER 1981

W - 064 FOR FURTHER DETALL

wW - 006 FOR FURTHER DETAILS

HOW TO SUCCEED IN THE ELECTRONICS BUSINESS:
Available at your
newsagent or
direct for
sop $p \& p$

INVEST GOp AND MAKE \$2.40 net profit

Buy Ambit's new concise component catalogue and get $£ 1$ vouchers. Use them for a $£ 1$ discount per $£ 10$ spent. But even
Worid $_{\text {The }} \quad 60 \mathrm{p}$ Electronics without this, you will still find WRRE offers the low prices,
fast service and technical support facility second to none. Here are some examples from the current issue:

alli:IT international

ww - 060 FOR FURTHER DETAILS

P4000

PRODUCTION PROGRAMMER

- Program up to 8 Eproms
- Covers
- Powered down sockets
- Independent blank cheo
verifliprogram modes
- Simple to use with mode
socket

CP INDUSTRIAL ELECTRONICS LTD UNT G, TOTNESINDUSTRIAL ESTATE

ww - 028 FOR FURTHER DETALLS

SOUND INVESTMENT

 $\stackrel{C}{5-\infty}$Replacement tape heads from Monolith could mean a big
mprovement in sound quality from your tape recorder. A full catalogue is available, price 50 p , which features a wide range of heads for cassette and reel to reel machines, as well as replacement motors, tape transports, etc. 7 mm apart, 12 mm from head face : Thapar, 12 m Hoad

$\begin{array}{ll}\text { C22ESO4 } & \begin{array}{ll}\text { Four channel/track } I / p \\ \text { Twin half track erase }\end{array}\end{array}$

MONOLITH

electronic products

$\frac{46306 \text { MONLTH G. }}{\text { WW-054 FOR FURTHER DETALS }}$

Hand Tools \& Production Aids for the Electronics Industry

TELE-PRODUCTION TOOLS LIMITED Dept.ww-1
Stiron House, Electric Avenue, Westcliff-on-Sea, Essex, SSO 9NW . Telephone: Southend (0702) 352719

If you are looking for amplification, take advantage of the same superb quality Crimson modules that the BBC, 18 AB , KEF and numerous recording
studios have been

Power outruut is quutede in wRMS and is given for two modules off the same power supply. Higher powers can be obtained if using our
one modue

Fulll function and parametric tests for up to 24 -pin devices of
the following families: $T \mathrm{TL}$, RTL, CMOS, Schottky TTL, DTL,
HT \& MOS Holds up to 500 test programmes including your own and/or
from the Quartech library.

QUARTECH
Design \& Development Ltd.
14 Kingsgate Place, London NW6
$01-328$ TA
0.
01-328 7987/624 1487
WW - 042 FOR FURTHER DETAILS

METALFILM RESISTORS 1\% Tolerance, $1 / 4$ Watt

wW - 010 FOR FURTHER DETAILS

CX80 MATRIX

At last a low-cost Colour Matrix Printer for At last a low-cost Colour Matrix Printer for Text, Graph
Dumps, etc.

Colour printout is quickly assimilated, makes graphics more understandable and is an ideal medium for the presentation of complex data or concepts.

Compatible with most microprocessors, prints in 7 colours - sophisticated internal programme makes the CX80 easy to use.
Dot Addressable +15 user programmable characters, 96 ASCII and 64 graphics characters in rom. Centronics interface with RS232 and IEEE488 options.
The CX80 is a product of our own design and development laboratories. It represents a British breakthrough in colour printer technology. Colour brochure on request. OEM pricing available.

INTRUDER 1 Mk. 2 RADAR ALARM

With Home Office Type approval
The original "Wireless World" published Intruder 1 has been re-designed by Integrex to incorporate several new features, along with improved
 eic. Complete kit $£ 52.50$ plus VAT, or ready built and tested $\mathbf{£ 6 8 . 5 0}$ plus VAT.

Wireless World Dolby noise reducer

Trademark of Dolby Laboratories inc.

 Dyramic range $>90 \mathrm{~dB}$

All kits are carriage free
ITTECREK LIMITED Burton-on-Trent, Staffs DE11 9PT Burton-on-Trent (0283) 215432 Telex 377106

Sowter Transformers With 40 years' experience in the design and manufacture of several hundred AUDIO FREQUENCY TRANSFORMERS OF EVERY TYPE YOU NAMEIT! WE MAKE IT! OUR RANGE INCLUDES \qquad	

E. A. Sowter Ltd.
E. A. SowTER LTT. (EEtatilished 1991): Reg. No. England 303990
 wW all For further details

ELECTROVALUE

Keithley quality: professional performance. At a price no That's the new 129 from Keithley Instruments - one of the
leading names in DMM's. Specification includes 0 full 10 amp range 0 only one cailibration adjustment required per rear 25 ranges; 5 functions: ac/dc VI and Ohms
020,000 hour M.T.B. F. © Resolution $100 \mu \mathrm{~V}, 1 \mu \mathrm{~A}, 0.1$.
0.8% dc accuracv. O. 8% dc accuracy.
The 129 is now avallable on mail order bringing it to the
-D A superb leather case and
S 5 Sland, value over with this offer.
Easy to order: Fill in and post the coupon enclosing
cheque/credit card details.

In a hurry? Then ring
0734751777 or Freephone 3272 for our 24 hour

KEITHLEY

Keithley Instruments Ltd
1 Boulion Road Reading Berkshire RG2 ONL

WW - 068 FOR FURTHER DETALLS

Communications Microphones by . . .
"SISHURE ${ }^{\circ}$
Shure Electronics Limited, Eccleston Road, Maidstone ME15 6AU Telephone: Maidstone (0622) 59881

wireless world

Editor: TOM IVALL, M.I.E.R.E.
Deputy Editor: PHILIP DARRINGTON 01-661 3039
Technical Editor: GEOFF SHORTER, B.Sc. 01-661 3500×3590
Projects Editor Projects Editor M1-661 3500×3588
Communications Editor: MARTIN ECCLLES
$01-6613500 \times 3589$ 01-661 3500×358
News Editor: DAVID SCOBIE
$01-6613500 \times 3587$ Design Editor: RICHARD NEWPORT

Drawing Office Manager ROGER GOODMAN Technical Illustrato BETTY PALMER

Advertisement Manager: BOB NIBBS, A.C.I.I. 01-661 3130 DAVID DISLEY
$01-6613500 \times 3593$ BARBARA MILLER 01-661 3500 X3592
Northern Sales HARRY AIKEN
$061-8728861$
Midland Sales BASIL McGOWAN

Classified Manager: BRIAN DURRANT 01-6613106 OPHELIA SMITH

Production
Production:
BRIAN BANNISTER BRIAN BANNIS
(Make-up and copy) 01-661 3500×3561 Publishing Director:
GORDON HENDERSON

A charter for isolation

One small indication of the nature of the UK's new Engineering Council is the fact and unpaid. The high abilities of Sir Kenneth Corfield, who will be the first to occupy the seat, are beside the point. Apparently the duties are not considered important enough to require full-tim rewarded. Of much greater significance, though, is the fact that this creation of the Department of Industry is being incorporated by Royal Charter, rather han by statute as recommended by the approval of the monarch, and hence of the government, with all the social cachet this implies; it is guaranteed continuance and the monopoly power to do its ow thing; and there are the financial no real power to make changes: unlike a statutory body it has neither the authority of Parliament behind it nor the responsibility of having to be accountable Parliament for its actions.
The individual British engineer may group of big-wigs can actually do for him - or, indeed, for the country as a whole, in the sense that Finniston had in mind writing the emergent Council does not even possess the powers of that other chartered and ineffectual council, the CEI, which at least has its own national egister of engineers and But it is only fair to w an only judge by the results. What is, however, immediately obvious from the government's decision not to allow a tatutory Engineering Authority is that firmly isolated from public affairs. Engineering is changing the world, and it is in politics whether one likes it or not. (If you doubt this, think of weapons systems for a start.) Yet in the UK
engineers are not considered good enough to be involved in the decision making which determines the uses of their work in the wider world. Or is it, perhaps, that they are considered too dirst to know what is really going on? The Oxbridge arts men who are still the most influential members of Britain's
bureaucracy do not like to admit that hey are really running a technocracy. T this too explicit. They prefer to keep engineers in a bin and take them out to perform like puppets when required hen put them back and close the lid firmly, before they start asking awkward would not do to let engineers become too ware of their real power.
Fortunately for the bureaucrats, and heir political bosses, engineers as a body end to be conservative in outlook. When with the strange device Nihil aliud nisi officium (I'm only doing my job). This attitude, according to one contributor to his issue, Dr Peter Hartley, is a result of inappropriate for the contemporary world - a system rooted in the 18th-19th century ethos of humanism and the "conquest of nature". It leaves us, says Hartley, with a "conception of the
engineer as no more than a high-grade engineer as no more than a hogh-grade professional - that is, with no responsibility for his actions beyond thei technical adequacy." Of course, most engineers like to think of themselves as way; but where do they get this idea? More often than not it is a delusion, arising because their education is different from that of technicians and probably longer, because their work is
often more difficult as a result of having to consider options and decide among hem, and because these decisions are ikely to have wider effects. But if with all this the engineer still really does no must accept as given, he is not being fully professional, says Dr Hartley, since he is not taking into account the ultimate meaning and consequences of his rofessional actions.
A new body like the Engineering Council would be in a good position to
initiate a system for educating engineers to become fully professional in the above ense. But while this organization emains virtually a cocoon, isolated from hrough the market for engineering products, there is not much chance of this happening.

Millimetre-wave lens aerials

New method for constructing metal plate refractors is simpler

by K. L. Smith Ph.D.

University of Kent at Canterbury

Fig. 1. One of the lens aerials constructed
by the new method.

Advantages over a reflector

 Because both the incident and the reflected irregularity on the surface of a mirror, the igure or accuracy of the surface of a reflec tor has to be held quite rigorously in terms of fractions of a wavelength. But a wave passing the surface of a lens is only affectedonce, so that the figure of that surface can be relaxed to half the accuracy for the same
performance. A reflector operated off the axis of symmetry introduces a rapid dete-
rioration of gain, beamwidth and performrioration of gain, beamwidth and perform-
ance generally. The lens aerial described is relatively insensitive to this off-axis operatan - so much so that two (or more) feeds ion with more than one station, yet with only a small reduction in aerial gain over a considerable solid angle around the axis. The lens performance is also insensitive to reflector is very sensitive to this twisting.) These properties correspond to performance with respect to 'coma' and 'astigmatism' in optics.
Another advantage of the lens is that the
energy is transmitted forward throus lens and only a fraction of the already small percentage reflected back is able to reenter the feed horn. At first sight, the required thickness of the lens would appear to be con aerial of this type can be stepped' and this reduces the thickness and therefore the amount of material used. One small disadvantage of stepping is the
slight shadowing that occurs, slight shadowing that occurs, as it reduces the effective aperture a little. But to make
up for this, one should consider the absence of feed horn or secondary mirror locking that occurs in reflectors.
Slightly more sophisticated advantages accrue from the strongly polarising effect
of the grid of plates making up the entire aperture. This yields an aerial with a remarkably low cross polar response. Frequency re-use systems might find this of considerable value. One disadvantage of a lens aerial over others is that it is band-
width limited (equivalent to chromatic aberration in optics), although some people may consider this an advantage. Stepping the lens profile has the interest-
ing effect of broadening the bandwidth.

Theoretical operation

From the simple derivations in the appendix the predicted curve on the surface is an ellipse on one side, for a plane surface on
the other. Readers might think it strange that a concave lens is required to give the plane wave from a point source. The explanation is that the phase velocities of the wave are greater than the velocity of light
inside the plates, which yields a refractive index less than one - hence the concave shape for a converging system. At every point where the phase of the wave in-
creases by 360° as creases by 360° as one moves out over the lens from its centre, that much of the metal
plate may be removed without affecting the final plane wave phase front. This is he explanation of the stepping.
The spaces between the plates form a waveguide and for this reason the spacing
cannot be less than half a wavelength, or
the 'waveguide' would be below cut-off and no propagation would result. The actual thickness in terms of the wavelength sets the value of the refractive index. Of course, wavelength changes with frequency - so therefore does the refractive This is what makes the lens frequency-sen sitive.
Becau
Because the refractive index is determined by the separation of the plates, then careful spacing for constancy over the sur-
face is required. This was achieved by small accurate spacers threaded on high tensile wires, as shown in Fig. 2.

Construction

To make the project a little more challenging, the design frequency was increased to 30 GHz (wavelength $=1 \mathrm{~cm}$). The very complex problem of developing stepped curves gradually changing plate by plate,
which when assembled make up the lens, was obviously one of the 'acute manufacturing problems' reported in the earlier literature. It was while working out how to
make this surface of make this surface of revolution in one
operation that the original idea in this operation that the original idea in this
work occurred. The material chosen was thin aluminium sheet - which, of course, had an intrinsic thickness according to its gauge. By choosing the appropriate gauge and stacking twelve of these strips, one obtains the precise design spacing, a, by
taking strip one, thirteen, twenty-five and so on. Eleven other lenses are obtained by taking the corresponding strips in the series.
The im
The important advantage of this procedure is that once the strips are assembled
and the template made, then by turning the whole stack on a large lathe (and engineers have mentioned that vertical axis lathes are available to turn everything up oo four metres diameter!') all the strips are practice this process was fairly simple, once the strips were bolted together and bedded in wax against the faceplate. Fig. 3 shows this work in progress. No mention has been found in the literaemployed before. Most of the difficulties of making these lens aerials are overcome by employing it.

Design example

The wavelength at 30 GHz is just 1 cm . When the refractive index has been de cided on, the spacing of the plates is calculated from equation A_{3}. If the refractive
index is too small, reflection losses at the surface increase. On the other hand if it is too large, the lens thickness tends to become unmanageable. Gaining experience

WIPELESS WORLDDECEMBER 1981

Fig. 2. Assembling the aluminium strips on
high tensile wires, with spacers threaded on the wires tof ofrm the waveguide
between strips.
promise choice to be made. We chose $n=$ 0.583 and using equation A_{3}

$a=\frac{\lambda}{2 \sqrt{1-n^{2}}}=0.62 \mathrm{~cm}$

Now the size of the lens aperture requires a decision. This depends on the gain G you are looking for, which, as shown in the appendix, is closely
width obtained. An important maximum gain of an aperture aerial over maximum gain of an aperture aerial over
that of an isotropic radiator, and the area A of its aperture, is given by
$G=\frac{4 \pi A \eta}{\lambda^{2}}$
or in dBs ,

$$
G_{\mathrm{dB}}=10 \log \frac{4 \pi A \eta}{\lambda^{2}}
$$

Here η is called the efficiency and is a fraction of how close the effective electrical area approaches the geometrical area.
The other variable yet to be decided The other variable yet to be decided on
is the focal length, f. We decided to work
to a chosen gain, to see how closely we could achieve it.
an isotrope. This gave

point 64 cm behind it. ${ }^{2}$
With the focal length settled, and a ellipses were carefully plotted to scale, according to the equations given on Fig A_{2}. A metal template was worked to thes e achieved while turning the curves on he lathe. The focal length and diamete hosen resulted in six steps across the len adius.

Performance measurements
A horizontal test range has to be long nough to enable the sending and receiving aerials to be in the far field zone. Th
minimum distance for this condition is
Range $\geqslant \frac{2 d^{2}}{\lambda}=58$ metres for this aerial
We measured the gain and beam pattern We measured the gain and beam pattern
over a 60 -metre range. There are stan-
dard gain horns available commercially and the measurements on any test aerial can be relative to one of these. The system sed to do this is shown in Fig. 4. By usin calibrated attenuator the received r.f power reaching the detector can be
equalised in both cases. The difference in attenuator readings indicates directly how much higher the gain of the test aerial is over the standard horn. The synchronous, or phase sensitive detection ${ }^{3}$ system yield measurement and greatly increases the sig nal-to-noise sensitivity ${ }^{4}$ The result ob tined was a gain of 39.3 dB for one sampl ens and 38.2 dB for another. This shows d agreement in performance For the best sample, the efficienty is $\eta=$
30%. This means that the 54 cm 竍 diameter of the lens is equivalent to perfect one 32 cm in diameter, although rigorous discussion of this point brings in directivity, D, as well as the gain, G. This performance is quite good, when it is remembered that the theoretical uniform power distribution across the aperture is ever obtained in practice and that some wer is wasted

Beamwidth and sideholes

The same test range enables the beam power pattern to be plotted by turning the knownut a vertical axis through smal known angles. The drop-off in received made up by reducing the calibrated atten uator value, thus gaining a direct $d B$ reading for each point. Plotting on polar paper gives the beam pattern.
We cheated a bia
We cheated a bit on this measurement in
that a direct X-Y ploter arranger that a direct $X-Y$ plotter arrangement was
used, but this luxury is not necessary for less well-equipped experimenters.
Fig. 5 shows the pattern obtained for the 39.3dB gain aerial. The 3dB beamwidth i 1.4° and directly from equation A_{9} the

$$
d_{\text {effi }}=\frac{57.3 \times 1}{1.4}=41 \mathrm{~cm}
$$

This is larger than the predicted size from

Fig. 5. Polar diagram of fens aerial. Slight
asymmetry suggests astigmatism in lens.
e efficiency calculated from the gai easurement. This is explained the gain measurement. This is explained by the ering and reflection in the calculation hus the aerial is more directive than the ain calculation suggests and further illus rates the difference between the ideas
ain and directivity of an aerial. From Fig. 5 the slight asymmetry on the here is a small amount of astigmatis in this lens. The unequal sidelobe strengthen this assertion. The worst case
sidelobe is approximately 25 dB down on the main beam peak.

Concluding remarks

uilding aerials is interesting work and the pleasure of obtaining such a good result

on fine cords and would remain fixed and rigid at highly accurate spacings.
The project has been interesting and
would like to thank Mr U. E. Ekaette, who carried out experiments on this project nies, UKC, who undertook constructiona work.
Appendix
The phase velocity of the e.m. wave betwee
$\nu=\frac{}{\sqrt{1-\left(\frac{\lambda}{2 a}\right)^{2}}}$ where c is the velocity of light, a is the plate
pacing and λ is the free space wavelength. If a is set at $\lambda 2, v$ goes to infinity; in other words no propagation is possible. The waveguide is
said to be cut-off for a larger than $\lambda 2, v$ is said to be "cu
greater than c.

Fig. A_{1}
From definitions in optics, the refractive index n is
media,
$n=\frac{c}{v}$
d for this work, n is less than 1. From A

$$
\begin{equation*}
n=\sqrt{1-\left(\frac{\lambda}{2 a}\right)^{2}} \tag{3}
\end{equation*}
$$

Again from optics, optical paths (that is, paths along which the phases are the same) are defined
$\frac{\text { geometrical path }}{\text { wave velocity }}$ \qquad cal path

Consider Figure A_{1}. If the curve is such that all optical paths from P to the axis OY are equal, th F will end up sending out a plane wave to the eft from OY onwards. Clearly for all parts of the incident spherical wave to end up producing plane wavefront in phase along OY , the veloc-
ity between the plates must be greater than c. Therefore, equating the optical paths OF and P Therefore, equating the optical paths OF and
will give an equation for the required curve.
$\sqrt{(f-x)^{2}+y^{2}}+\frac{x}{v}=\frac{f}{c}$
Tidying up and writing in n for c / v
$\left(1-n^{2}\right) x^{2}-2(1-n) f x+y^{2}=0$
A_{5}
$\square \quad A_{6}$ Coordinate geometry buffs will inimediately
recognise this as the equation of an ellipse. If we cut this curve as a concave ellipsoid surface on
chat and the stack of metal plates, it should act as a

In a distance $\lambda(1-\eta)$, the phase of the wave
changes by 2π radians inside the plates. So a changes byil of ellipsses with $\lambda(1-n)$ as a run-
whole farimeter
ning parametr enables metal to be removed as ing parameter ena
hown in Figure A_{2}.
These curves can be plotted accurately in
rder to construct a template which con order to construct a template, which can be used
during manufacture to yield a surface figure whose r.m.s. errors are much less than a wave
pproximate beamwidth of aperture aeria In microwave communication (and at many other frequencies for that matter) the ability to
beam' the energy owards the intended receiver is a great help in keeping the required transmita great help in keeping the required transmit erference frees, making the communication rela-
ively private; and in some cases avoiding tively private; and in some cases avoiding
problems with 'multipath' effects - which is a version of freedom from interference. Allt this is
especially true in satellite conmuniction especially true in satellite communication
systems. The contour diagram of the aerial beam intersecting the Earth in that application is termed the 'footprint'.
Consider the aperture aerial in Figure A_{3}. If the aperture is illuminated uniformly right
across the dimension d, then any small element across the dimension d, then any small element
of the wavefront $d A$, will radiate in phase along the forward direction. It will also radiate nearly equally in other directions (some readers will
recognise that this is what Huygens said in his comments on 'secondary wavelets'). Ho whever, the pha
differ.
In. Figure A_{3}, coinsider waves along direction
$\theta / 2$ to the forward direction. If the waves fröni
$d A_{i}$ and $d A_{2}$ vibrate 90° out of phase along
direction $\theta / 2$ then that will be true also for all $d A$ separated by $d / 2$. But this amount of phase
difference means that the power density in the difference means that the power density in the
wave is now half that going along the forward wave is now half that going along the forware-
direction. This s called the e 3 dad down' 'irec-
ion. To get 90° phase difference in the contriutions from the $d A_{1} \mathrm{~s}$ and $d A_{2} \mathrm{~s}$, $x_{1}+x_{2}$ must equal quarter of a wavelength.
\therefore from the right angled triangle:

$$
\sin _{2}=\frac{\theta}{2}=\frac{\lambda}{8} \div \frac{d}{4}=\frac{\lambda}{2 d}
$$

Now for any reasonably high gain aerial, the
3 CB down' beamwidth θ will be small. This means town beamwidth θ will be small. This
me/2 $\theta / 2$ for the angle in
nadians.

$$
\begin{aligned}
\text { radians }=\frac{\lambda}{d} & \mathrm{~A}_{8} \\
\text { or } \theta^{\circ}=\frac{57.3 \lambda}{d} & \mathrm{~A}_{9}{ }^{\prime}
\end{aligned}
$$

This is approximate, but quite good in practice.
Real beamwidths would always be greater than his optimistic estimate.
References

1. Winston
. Winston E. Kock, "Metal-Lens Antennas". Proc
R.E. and Waves and Electrons, Nov. 1946 , pp. ${ }_{\text {A. W. Love " "The Diagonal Hor Antenna" }}^{828}$.
 3. K. L. Smith, "The Ubiquitous Phase Sensitive
Detector". Wireless World, Vol. 78, No. 1442, August 1972 2.
2. K. L. Smith,
3. K. L. Smith, "Noise, Confusion in More Ways
Han Oine" Wireless World, Vol. 81, Nos. 1471,

1472, 1473, , i47e, 1975 .
5 Seb
Sor instance
5. Sebe for instance, EEv.iard C. Jordan,
Electromagnetic Waves and Radiatit.

Ṫhe function of functions

An approach to Walsh functions from telecommunications history
by Thomas Roddam

Named after their originator, an American mathematician, Walsh functions are now beginning to find applications in electronic first discusses the use of
 irst discusses the use of mathematical functions in general in telecommunications then goes on to illustrate the nature of Walsh functions through a practical technique for avoiding crosstalk echnique for avoiding crosstalk Generation of Walsh functions and some of their applications will be dealt with in the concluding part of

At somewhat irregular intervals readers of Wireless World find themselves confronted tion. It may be, indeed it often is, our old friend the exponential, or it may be, say, Muratori's function. Why does this happen, why do we
you read them?
It is not just
It is not just the money, barely enough
to pay the ink bill, which makes the author produce this stuff. There is a real satisfaction in attempting to make poor old exp (x) fresh and interesting: there is a real
challenge in explaining Muratori's function clearly without boring the reader stiff. The reader is more of a problem. Many years ago the editor, not this one or his predecessor, told me how he had actually seen a reader, reading the latest issue. In
the Underground. However, little is the Underground. However, little is
known about the great mass who live a no doubt quiet and industrious life, and never write letters or complete questionnaires. The problem is quite simply this. Either they know all about the Binomial Theo-
rem, let us say, or they don't. If they don't, either they need to, or they don't. The last group have lived happily in ignorance, while the ignorant who need to know must surely need to know more than can be packed into a few pages.
sort of people we are. In most organisations there are two sets of people. There are the hard-headed men committed to getting stuff out of the factory gate and the
long-haired boys messing about with sliderules. If you prefer it there are the fossils who spend a week getting it wrong with a soldering iron rather than a morning on the computer finding an optimum soluby. Murator's function is a weapon used
by theorist to defend himself against the pragmatist, especially if the pragmatist is his boss. Know your enemy.
With this in mind I began to peer back into the early days of our trade. It turns out that we have been in business longer
than I thought. The electric telegraph is, of course, the starting point, but it is sur-
prising to find that the proposal for an
electric telegraph actually preceded the
work of Volta and Galvani. The first work of Voita and Galvani. The first proposal, in the Scots Magazine, was in
1753 , and the scheme was to use 26 wires, each with a hanging pith ball which would strike a bell, using a Leyden jar as source. Once the cell had been invented, and Oersted had found that a current would influence a magnet, the way was open
By about 1850 things were really m and the contrasts, the tunnel vision, all the factors of our modern technology were showing themselves in all their glory. The submarine cable, and especially the Atlantic cable, bring out all that is finest in
pragmatism, theory, and the use of theory for analysis but not for synthesis. Fig. 1

Fig 1. Cross-section of a submarine telegraph cable, as con
comes from Notes on Telegraphy, A. G. Pratt and G. Magg, which my mother the stranded conductor was the idea of Professor William Thomson, later Lord Kelvin, in 1854. Clearly he was a sound practical man. In 1855, however, he was onsidering the partial differential equaion
$L C \frac{\partial^{2} n}{\partial t^{2}}+(C R+L G) \frac{\partial n}{\partial t}+R G n=\frac{\partial^{2} n}{\partial x^{2}}$
The trouble is that he decided to neglect full equation, called the telegrapher's equation, was published by Kirchhoff in 1857, and forgotten, by Heaviside in 1876, but Heaviside never had any luck, and by Poincaré in 1893. Thomson comes up with a solution for the line current at time t, I_{l}, tery can produce, I_{o}, of:

$I_{\mathrm{t}}=I_{\mathrm{o}}\left(1-2\left(\epsilon^{-\pi L \nu k c l 2}\right.\right.$

$\left.\left.-\epsilon^{-4 \pi 2 t k c l 2}+\epsilon^{g \pi 2 t l k c l 2} \ldots.\right)\right)$

where $\epsilon=(3 / 4)^{t / a}$ and $a=k c l^{2} \log _{e}(4 / 3) / \pi^{2}$

There's glory for you. At the end of the day it boils down to saying that for a partiinversely proportional to the square of the length.
At this point there are three ways to go. The first, Thomson again, is the purely instrumental one. When the battery is ap$R C$ circuit the current starts to grow, very slowly, at the far end. Invent a very sensitive detector and it will only be necessary to hold the key down for a relatively short time to get a signal, and the reduced
charge in the system will soon die away ready for the next mark.
The next step is to use what politicians call a U-turn: at the end of a positive mark the battery is reversed, to send a curbing
current down the line. The duration of the curbing current was changed according to the speed of working but was typically about four-fifths of the mark pulse. After he curb came an inter-pulse interval, with he line earthed.
This is nothing but something we tend
regard as quite a modern idea. The ignal characteristics have been tailored, coded, to suit the characteristics of the medium. Indeed, the telegraphers did quite a lot of this. Morse produced a code
in which the commonest letters used the in which the commonest letters used the
shortest groups, and on the long cables, with the sensitive receivers, input and output capacitors were used to eliminate the effects of earth currents. Then they went to multiplexing by using three-value logic,
and to some quite sophisticated time division multiplex systems for short lines, with synchronisation between the two ends. All this ingenuity, all this tedious calculation of the rise and fall of current in long
lines, but no-one really looking at the lines, but no-one really looking at the telegrapher's equation. At least, memory
suggests that Heaviside did, but his sad cry even Cambridge mathematicians deserve justice' summarizes his influence. In Europe the invention of the loading coil is attributed to Pupin, but really it is sitting,
here, just waiting for someone to ask' "what value of L do we need?"
If there is a moral, and I think there is one, it is that it is a waste of time to use mathematics to find out why it works. Use
the mathematics to find out if it will work, the mathematics to find out if
or how to make it work better.
Under certain conditions the telegrapher's equation brings up the Bessel funcions in its solutions. The Bessel functions weave in and out of the history of telecom-

IRELESS WORLD DECEMBER 198

ust after someone had the idea of sticking a paper cone to the centre of an ear-piece,
instead of fastening the ear-piece to the end of a large horn. Looking back we can ask why there was such interest in calculating how the cone would break up into
spatial harmonics when the real problem spatial harmonics when the real problem
was to prevent this happening at all. More was to prevent this happening at all. More
recently the Bessel functions have appeared in filter design, although I found them in a pulse response problem quite a ong time ago.
Then, of course, there was frequency modulation. The idea, that by keeping the
carrier going at full power all the time the noise at the receiver could be kept down, seems a fair one to use for examining a ystem. And it seemed to work. The theoretici
of
$e=E_{0} \sin \left(\omega t+m_{\mathrm{f}} \sin p t\right)$, where
$\omega=2 \pi f_{c}$, with f_{c} the centre frequency

$p=2 \pi f_{\mathrm{s}}$, with f_{s} the signal frequency | and |
| :--- |
| $\delta f_{\mathrm{c}} / f_{\mathrm{s}}$ |

When this expression is expanded it be-
comes
$e=E_{0}\left[f_{0}\left(m_{\mathrm{f}}\right) \sin \omega t\right.$
$+\mathcal{F}_{1}\left(m_{f}\right)[\sin (\omega+p) t-\sin (\omega-p) t]$
$+\mathfrak{F}_{2}\left(m_{f}\right)[\ldots(\omega+2 p) \ldots(\omega-2 p)$
$+\mathcal{F}_{3}\left(m_{\mathrm{f}}\right)$.
At this point the interpreters did the wrong thing. If the spectrum is to be kept
into the same bandwidth as we need for into the same bandwidth as we need for anplitude modulation we must have ${ }^{\prime}\left(m_{\mathrm{f}}\right)$
and that the $(\omega+2 p),(\omega+3 \mathrm{p})$ etc. terms can be dex of about one half, for which the \mathscr{f}_{2} term becomes about 3%. If you go on to calculate the noise advantage you find that the whole thing is just a lot of nonsense. point in taking it seriously. Every point in taking it theriouslo Every
schoolboy knows now that the kes to f.m. operation are hard limiting and a high modulation index.
Here we have the theoreticians saying something would not work, and the practi-
cal man showing that it did. A rather bizarre phase was the 'sidebands don't exist' period. The expansion of
$A\left(1+m \sin 2 \pi f_{s} t\right) \sin 2 \pi f_{c} t$ to give a carrier, $A \sin 2 \pi f_{c} t$, and two
sidebands at $\left(f_{\mathrm{c}} \pm f_{s}\right)$, is not the most difficult mathematics we expect to meet. It was, however, too much for a school of thought, still alive around 1930, which
held that the signal was there, in the carheld that the signal was there, in the car
rier, and could be received with a very narrow band receiver. Circuits were pub narrow
lished, sets were made. We shall never
know know just why they seemed to work, but there are two obvious possibilities. The
narrow bandwidth was produced by narrow andwdic wits, which would not
string of tuned cir ches if they were tuned
be all that narrow even string of tuned circuits, which would not
be all that narrow even if they were tuned
to the same frequency. The detectors used

Sir George Jefferson, chairman of British Telecom, waves cheerily from an elevated engineers practise climbing on these short enginee
poles.
then behaved much better at low modulation, so that the carrier enhancement
would have improved the detector. The audio amplifier, with $C R$ interstage coupling, could easily have boosted up the lost treble. Alternatively, or additionally, we must not forget one of the great design
problems of the time, the feedback from anode to grid through the valve capacitance. Strong coupling, both capacitive and inductive, between the tuned circuits must have been present. Immediately we have a bandpass structure, not a single
narrow slit. The true believers would not be deterred.
I referred to this as a bizarre event, because it took place when multi-channel carrier systems were already in use on telespeaking by telephone depends on the product of the resistance of the circuit, (in ohms) R, and the capacitance of the circuit (in microfarads) K - or $K R$. The following figures show approximately the $K R$
which limits easy and practical speech, and which limits easy and practical speech, and
indicate the telephonic value of the conductors:

copper wire (open)

iron wire (open)
$\underset{d}{K R}$
$R 10,000$
8,000
5,000
The low value of iron is due to the pres
ence of electromagnetic inertia, which is ab sent in copper. So the next step was to put in more loading coil.
The great influence which the loading coil was to have on the communications industry arose from the simple fact that the numbers needed were enormous. In the
Bell System light loading was a coil every $6,000 \mathrm{ft}$, and heavy loading a coil every $3,000 \mathrm{ft}$. At $3,000 \mathrm{~Hz}$ loading brought the attenuation per loop mile down from about 2 dB to about 0.5 dB . Longer circuits, bet
ter circuits, more traffic, and so more cir ter circuits, more traffic, and so more cir
cuits and more loading coils. The size and the spacing demanded close study. This study, of a long ladder of series inductors and shunt capacitors, brought the func tions $\cosh \theta$ and $\sinh \theta$ into the commu-
nication engineer's life. The development of the low-pass filter, followed by the other classic filters, from the long line analysis explains the awkwardness of early filter theory. In the long line the problems of end effects were relatively trivial, but the
ends could wag the filter if only a couple of sections sufficed. Clever systems of high class bodging, like m -derivation, mm ' derivation, α-matching, and tedious calcu lations of mis-match and interaction loss made filter disign an art. Then we found
Tchebycheff. If my memory is correct, his interest, in St Petersbourg (he wrote in -French) in 1875, was steam engines. All those shiny bits that move to and fro, while the wheels go round, should move in
straight line. Like the pass band
of a filter. The Tchebycheff functions were
atep in linkage design. a step in linkage design. can be found in the history of modern filter design. Once it was seen that the problem was, quite simply, to design a finite net-
work of defined properties, it became a matter of using well-known techniques. The vital step was the realisation that the dea was to find the best value to use in the structures which had grown up from the long line. Softly the functions come and go, or, if
your taste is more demotic, I go, I come back. The Laguerre polynomials have cropped up again, though I haven't seen
them around since I dealt with a chain of them around since I dealt with a chain of
regulating repeaters, back in about 1950. regulating repeaters, back in about 1950 .
The story began with telegraphy, with signals which were either marks or spaces, and moved on to telephony, with the signals a mixture of sine waves. In the 1930s, however, Alec Reevés was building one
pulse modulation system after another. Before any of them came into service the digital computer was on the way. The Boolean algebra, which we had come to associate with the use of mathematics in cleaning up classical logic,
Although Boole's logic, and the techniques based on it, like the Karnaugh map, were central to the signal processing operation, the signal frequently needed to
be transmitted from place to place. The available telephone channels, and the general thinking of the radio circuit designers, were based on bandwidth, on the available chunk of frequency spectrum. Information theory, which started well before it really
mattered, defined what could be done. Fourier analysis could be used to discover just what the circuits did to the pulses. There is a faint memory of Heaviside here. The pulse gives an infinite series, and then the bandwidth limitations just chops off systems, indeed, the sine wave really needs an infinite number of pulses, and the pulses need an infinite Fourier series. The pulse-makers clearly need a new kind of series, to do for them what the
Fourier series had done for sinusoidal waveforms. It is to the favourite in this field that we now turn our attention. The biggest advance since sliced bread, we are old, is the Walsh functions, although I natural punishment. But Walshites have written:

We may well come to the point of view that if Walsh functions had been with us from the start and someone had then come
up with the idea of sinusoids we would all want to know what use they were."* A fund is being started to buy ocarinas for supporters of this view. We have already seen how important it is to keep one's feet firmly planted on the \star R. Barrett, J. A. Gordon, D. Brammer.
Theory and applications of Walsh funcTheory and applications of Walsh func-
tions. Hatfield Polytechnic Symposium. 1971 .
+1 am indebted to Mr A. Emmerson of British Telecom for locating Fig. 2 in the
book referred to.

Fig. 2. Transposition of telephone wires for
avoiding crosstalk
avoiding crosstalk caused by mutual
inductance. On the left is the pattern inductance. On the left is the pattern
employed and on the right the method employed and on the right the method of
wiring at a transposition point. (Adapted
lon from Railway Signalling and
ground when considering the use of mathematics. It is therefore appropriate to look at Fig. 2. When telegraph poles began to be used for telephone circuits it was soon found that if the two wires of one pair another, the mutual inductance produced cross-talk from one to another. A simple answer is to split the run in half, and cross ne pair a his symbolically as:

$$
\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}
$$

When there are more than two pairs we can start by taking two pairs as a quad, and can bracket up to be a matrix:

$$
\left(\begin{array}{rr}
Q & Q \\
Q & -Q
\end{array}\right)
$$

Four pairs can be transposed according to this pattern, with the total run split into
four sections. If we call this (G), we can transpose eight pairs according to the scheme
where \otimes is the Kronecker product, so that

$\mathrm{H}_{8}=\mathrm{H}_{4} \otimes \mathrm{H}_{2}$

The working of Fourier analysis depends system is orthogonal, so that
$\int_{0}^{2 \pi}$
$\cos m \theta \cos n \theta d \theta=\theta$ if $m \neq n$

The rows, and the columns, of the Hadamard matrix have this orthogonality char acteristic, which is why row 1 transposi-
tion does not tion does not couple to any other row. And
the rows are, quite simply, the Walsh functions. There is another way of producing them, which gives a different order The Rademacher functions are defined as
$r_{n}(\theta)=\operatorname{sign}$ of $\left(\sin \left(2^{n-1} \pi \theta\right)\right), 0 \leqslant \theta \leqslant 1$ and some of the Walsh functions are

> wal $(1, \theta)=\mathrm{r}_{\mathrm{r}}(\theta)$ wal $(3, \theta)=\mathrm{r}_{1}(\theta)$ wal $(7, \theta)=\mathrm{r}_{2}(\theta)$

$$
\text { wal }\left(2^{k}-1, \theta\right)=r_{k-1}(\theta)
$$

We can go on expanding in this way, and what we are doing is working with
mard matrices. Using the definition

$\mathrm{H}_{\mathrm{N}}=\mathrm{H}_{\mathrm{N} / 2} \otimes \mathrm{H}_{2}$
The way in which the rest of the family is derived depends on an equation which

$$
\text { wal }(\mathrm{i}, \theta) \cdot \operatorname{wal}(\mathrm{j}, \theta)=\text { wal }(\mathrm{i} \oplus \mathrm{i}, \theta)
$$

The symbol \oplus stands for modulo-2 addicarry sign. If we take

$$
\quad \begin{aligned}
& \begin{array}{l}
1 \rightarrow 0001 \\
\oplus \rightarrow 0011
\end{array} \\
& 2 \leftarrow 0010
\end{aligned}
$$

so that $\operatorname{wal}(1, \theta)$. wal $(3, \theta)=\operatorname{wal}(2, \theta)$

A set of wal functions is shown as Fig. 3 A point to notice is that θ is a time base,

$+1$

 wal $(0, \theta)$
 ${ }_{-1}^{+1} \square \square \square \square \square_{1}^{\mathrm{mal}(7, \theta)}$

Fig. 3. A set of Walsh functions, wal(n, θ). Note that θ is a time base and that, as the functions have the values ± 1, they are rectangular in form.
which goes from $-1 / 2$ to $+1 / 2$ in the time interval T. Another important feature is that the functions can be sorted out into two groups. If you imagine a sine wave and right down, a technique used, with 20 dB of clipping, for some transmission systems on noisy circuits, you will see that wal (1 , $\theta)$ looks very much like a clipped sine
wave, and wal $(2, \theta)$ like a cosine wave, The odd Walsh functions, which are antisymmetric, are written as sal (i, θ,,
while the symmetric properties of the even functions give them the form cal (i, θ). right down to give sal $(1, \theta)$ possessed the right down to give sal $(1, \theta)$ possessed the
property of having a frequency. sal $(1, \theta)$, a single cycle in the sine wave, has two crossings of the zero axis in each unit of
time. (As shown the end zeros are shared ime. (As shown the end zeros are shared with the next cycle.) The sequency of a
Walsh function is similarly defined as: Walsh function is similarly defined as:
Sequency in crossings per second $1 / 2$ (average number of zefo crossings per unit time)
What have we now got? A set of orthogonal functions, and the concept of se-
quency. It is the switching man's equivaent of the sinusoids and the concept of frequency.
oo be concluded in the next article, which wuil how how Walsh functions can be produced by hardware and discuss their use.

Police communications use computerised switching

When Leicestershire police planned to move
their headquarters from the centre of the city of
Leic their headquares rem site 5 miles out at Enderby,
Leicester to ned
they decided to modernize their they decided to modernize their communica-
tions system at the same time. The up-to-date communications centre is now working, though
the rest of the headquarters had to be left bethe rest of the headquarters had to be left
hind because of government spending cuts. The essence of the new system, designed and
built by Burndept Electronics, , st that it is based built by Burndept Electronics, is that it is based
on a computer. This provides, first, real-time on a computer. This provides, first, real-time
switching between audio ochannels in a networking system which deals with radio and telephone
messages and interconects the police officers messages and interconnects the police officers
concerned in any required pattern - for concernned in any required pattern - for
example, a policeman on his beat, a patrol car and a monitoring operator at the headquarters.
Secondly the computer receive stores displays Secondly the computer receives, stores, displays
and prints out digital information from a data transmission system which gives the locations and availability of 236 police vehicles in Leices-
tershire. Thirdly, it provides a means of transtershire. Thirdly, it provides a means of trans-
ferring textual information over private police ferring textual information over private police
lines and a store of data accessible to main police stations. (Actually three computers are $\stackrel{\text { spare.) }}{\text { For the networking system there are six }}$ consoles in the main control room (see picture):
Each console has a v.d.u. and keybard conneEach console has a v.d.u. and keyboard connec
ted to the main computer and also two switching control positions based on local microcomputers. At each of these switching positions an operator can use a keyboard and an 1.e.d.
display unit to control up to 10 audio channels.
Wint With each channel the operator can order paterns of switching for a variety of functions. For
example a "talk-through" function allows intercommunication between mobile radio sets, such as between a patrol car and policeman on foot with a hand-portable set. Link-ups can be
made between radio and radio (v.h.f. or u.h.f., between telephone and telephone, and between radio and telephone. Six functions are available or each channel, and whichever is operating is
shown by a l.e.d. lighting alongside an appropriate label. The control positions also allow the operators at the consoles to communicate with ach other and to be connected to a PABX
system. And, of course, they allow the Leices tershire police to communicate with police
is indicated at all the control positions until it is
fealt with. For deaing with unusual incidents there is also available a special remote control console
which which can be operated, for example, from inside
a van. This is connected to the rest of the system which can be o
a van. This is
by modems. The actual electronic switching of channels
under computer control is done by a solid-state space mat using a 4 wire bith for channel.
The vehicle monitoring system mentioned above was developed by Burndept CCyfas. It uses to the mobile radio in each car and, at the communications centre, a decoding unit connected to the main computer. In the vehicle a small
control box fitted under the dashboard carries rectangular grid pattern corresponding to the grid on a map of the area. Against the rows and columns of this gric are press-buttons. At regu-
lar intervals a policeman in the vehicle presses a lar intervals a poiceman in the vehicle presses a
row-button and a column-button, which to gether indicate the vehicle's position on the grid
at the intersection of the row and col at the intersection of the row and column. He
presses further buttons to signify whether the vehicle is available for duty or not. As a result binary digital codes are generated at a data rate
of 100 bits and these modulate the vehicle's of 100 bit/s and these modulate the vehicle's
radio transmitter on one of its voice channels by two-tone frequency shift keying. The codes are available to the police officers as pairs of decimal
digits (for exame digits (for example $5 / 8$ means the car is at the
police station and the crew is coming off duty) police station and the crew is coming off duty
and these automatically indicate the type of vehicle (e.g. 5 for Panda cars, 6 for Range Rovers).
At the
demodula
At the communications centre, the data is
demodulated from the radio voice channel, de-
coded coded and fed into the computer system, ,here a completet list of vehicle locations and states of
availability can be displayed on the v.d.us and availability
printed out.
Leicesters
Leicestershire police say that the new system
has not only improved their communications has not only improved their conmmunications
but also made administration easier and more efficient. At the same time as adopting this new technology they do recognize the increasing bourhood policeman on foot, the old-fashioned "bourhood policeman"

Direct digital frequency synthesizer

Ion spectrometer application needs all-digital technique
by J. H. J. Dawson, Ph.D.

WIRELESS WORLD DECEMBER 1981
proximating the value of the sine of 90° to hat of its adjacent angle in the r.o.m. because the logic which generates the sine values for the third and fourth quadrants does so simply by supplying a sign bit to g with the magnitude generated as for the input coding is not found in commonly vailable d-to-a converters and so code onversion to straight binary has to be dopted; this is not difficult, but require nother six i.cs. Finally, since this synthe ble, commensurate with a reasonabl afety margin, extra edge-triggered latche e needed to achieve synchronous oper ion at 8 MHz

Circuit description

The input frequency number in true 16 -bit inary code is fed, as in Fig. 1, to the 16 put, but the carry output passes to an exclusive-OR gate IC_{10} which functions as a partial adder and thence with the other adder outputs to the D inputs of 17 edge-
triggered latches, $\mathrm{I} \mathrm{C}_{5.7}$. The clear line for these three latch chips is shown as held. high, but if you want to add a clear facility to the synthesizer then this is the place to
do it. The latch outputs go back to the
other set of adder input ports so that the ways be incremented by the input frequency number at the next positive-going clock edge. If the input number is simply a 1 in the most significant bit (m.s.b.) then tate after four clock pulses. In other words, the m.s.b. input corresponds to an output frequency of one quarter of the locking frequency, which in this case means 2 MHz . The 1.s.b. input must 61 Hz) and so the output frequency is defined as $N \times 2^{-14} \mathrm{MHz}$, where N is the nput number.
Reflection (looking backwards through he r.o.m.) in the second and fourth quagates IC $8-10$ which invert when the m.s.b. output from IC_{6} is high. Except at 90° and 270° (conditions detected by the gates in $\mathrm{C}_{11-12)}$ the reflected angle is incremented by $99^{\circ} / 1024$ so that the reflection does ac-
tually occur about 90° even though it isn't present in the r.o.m. At 90° and 270° this
phat 90° even toung addition is not performed, with the result that the memory is addressed at the maximum angle which it does actually contain, viz $90^{\circ} \times 1023 / 1024$. Winh the Schottky and latch propogation delays, gate delays,
pical add times and latch set-up times in his section of the circuit amount to about lock pulses.
The read-only memory IC_{18} is rather low (maximum address access time of latches $\mathrm{IC}_{16,17,19}$. The sign bit, derived from the carry output of IC_{4}, is also passed hrough the latches to equalize delays and his must now be combined with the sine ro.m. to form a straight binary-coded output. This is done by the standard method of complementing the magnitude in IC_{20-22} and adding 1 in IC_{23-25} when the sign bit is high. The inverted form of the sign bit
must be added to the carry output of the must be added to the corrementing operation if disaster is not to occur at 180°. The resultant binary number is latched again before the d-to-a converter so that when a fast converter is The de-glitching should be unnecessary. The output code swings symmerran the
from 0000000001 to 1111111111 about the zero level 1000000000 .
To squeeze the last bit of frequency range out of the synthesizer a sharp multisection elliptic low-pass filter is used converter. It is designed to be 1 dB down at 3.3 MHz and with a minimum stop-band

Ionic chemistry without solvents

The circuit described in this article, together with scanning, timing and coble frequency synthesizer required for a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. The heart of his instrument is a mch cubed trapped uously pumped vacuum chamber and situated between the pole pieces of a large electromagnet. Chemicals are leaked into the vacuum so as to give a sample pressure Gas molecules are ionized by passing a Gas molecules are ionized by passing a
20 eV electron beam current of 50 nA through the cell for 5 ms , and trapped inside by the combined effects of the magnetic field and a potential well created by a small potential (1V) on the plates parallef to the
magnet pole caps. The remaining four cell plates are d.c. grounded, one opposing pair being connected to the differential outputs of the synthesizer, and the other pair through a preamplat ros up to eight megasamples per second. ", Just prior to "detection" the cyclotron motions of the ions present in the cell are excited by a swept frequency burst from the synhesizer, say cyclotron frequency

$$
F(\mathrm{kHz})=\frac{1537 B(\mathrm{~kg})}{m(\mathrm{a} \cdot \mathrm{~m} \cdot \mathrm{u} \cdot)}
$$

so that at 15 kG a mass range of 10 to 100 atomic mass units requires a frequency range from 2.3 MHz to 230 kHz . Each
group of coherently-excited similar-mass

Listening plates
To preamplifie
ons makes its contribution in the form of a decaying sine wave to the total transient mprove the signal-to-noise ratio of the nstrument it is then usual to quench the ions in the cell by reversing the polarity of the side plates, repeat the whole sequence of events, and to accumulate successive fransients within the computer's main
memory. It is so that this may proceed memoothly that the rapid sweep from the synthesizer must be absolutely reproducible with respect to phase, as must all timing operations concerned with the detection process. As in a spectrum analyser,
Fourier transform program will then separate the individual frequency components from the transient and allow ion concentration versus mass to be plotted.

The technique is insensitive by comparison with conventional mass spectrometers
having electron multiplier detectors, but mechanically it is very simple and yet can provide exceptionally high mass resolution. The real use of the technique comes from delaying the detection process until a second or so after the electron beam pulse.
During that time ion-molecule collisions occur and if some of them produce new chemical species the mass spectra will change accordingly - ionic chemistry without solvents. The chemistry of com-
plex mixtures can always be unravelled by plex mixtures can always be unravelled be
studying the effect of running the synthesizer at a fixed frequency shortly after the electron beam pulse so as to over-excite electron beampllse by one each possible
and hence expell one by
reactant ion.

News of the Month

Prize-winning computer

Sixth-formers Alistair Melville, William Morel
and Chris Thomas won the first prize in the group entries for 18 to 19 year old page group in heir entry was a microcomputer system and heir prize was a North Sea trip and $£ 200$. Thei real prize, however, was one that they had orga,
nized for themselves. At a computer exhibition ney established contact with a firm specializin in microcomputer interfaces, 3D Digital Design and Development, and managed to negotiate
deal for 3D to manufacture the computer and for them to take a royalty and to continue to develop the system. They seem to have traded part of their deal for regular salaries as, after
completing their A-levels, they are all employed

which they designod while still at school, and which won them a prize in the Young
Engineer for Britain Awards.
counter/timer, a 1 M byte addressing range with an optional cassette interface. Random acce memory is expanded by the addition of memory cards with 64 K on each card. There is a controller for up to four floppy disc
drives which are available in a number of dombi nations of size and density. The video con provides 40 or 80 characters width with 24 lines, and graphics with 640×240 pixels. There is
choice of keyboards. Further developments in clude high resolution and colour graphics; Uniflex operating system which will allow the computer to operate exacly like a PDP11; and
multi-user capabilities.

The computer inas been designed for maxiits designers are expecting the majority of users to be in industrial or scientific fields. It can be linked up to monitor and control processes and may also be used for business applications, such
as administration and records, accounting, data and word processing.
Concentrating on their computer design, the Concentrating on their computer design, the
designers did not get very good results in their
A-levels. Hewer designers did not get very good results in the
A-levels. However, the success of the desig
and the winning of the award has assured them and the winning of the award has assured them
of university places and they will return to Aca-
demia in September 1982 . demia in September 1982.
at 3D.
The three seem to constitute an ideal combi-
nation with one of them, Chris Thomas as nation with one of them, Chris Thomas as the software and Alistair Melville as the businessman.
The microcomputer has received the name
3D09 and because of its modular, rackmounted p.c.b. structure, it is very versatile. It is based
around a MC68B09 and this sives with a 500 ns cycle time. The MC68B09 has an architecture which encourages structured programming. The computer has an e.p.r.ro.m.-rehave several programmes running Low-level and high-level programming lan guages are incorporated in the Flex disk operat-
ing system. Available languages include Basic Labasic (with optional structured program ming), Pascal, Fortran, Forth, Algoib8, Lis
and Pilot as well Tand simulation operations
Technically the computer includes a proces
sor card with 2 Kbyte sor card with
r.a.m, two full Rys232 e.p.r.o.m.,

C.b. campaigner into designer

James bryant, well known as a campaigner for
citizens' band radio through the Citizens' Band Association, has now returned to his normal work as an electronics engineer and designed a
c.b. set for the new British market. Under the The British designed and made Tenvox c.b. transceir

(June issue, p.65) and, as well as being designed
and produced in the UK and produced in the UK, it uses British made
semiconductors, from Plessey, for the r.f. an semiconductors, from Plessey, for the r.f. and
frequency synthesizer circuitry. In fact the synthesizer circuitry is similiar to that published
by Peter Chadwick of Plessey Semiconductor by Peter Chadwick of Plessey Semiconductors
in our September issue, p.59-61. Mr Chadwick collaborated with Mr Bryant in the design of the
set.
set. The receiver has p-i-n diode antenna switching and a mixer with high dynamic range
(avoiding the need for (avoiding the need for an r.f. gain control). The
first i.f. is about 10.7 MHz while the second first i.f. is about 10.7 MHz while the second
high dynamic range mixer produces an if high dynamic range mixer produces an i.f. at
450 kH . The f.m. detector is a phase-locked loop type, and there is a 5 FW audio output stage
compatible with the 4 . compatible with the 4 -ohm loudspeakers al-
ready fitted in cars. The transmitter includes automatic speech processing to avoid the need
for a power microphone and for a power microphone and there is a theed
stage power amplifier. On the control panel are stage power amplifier. On the control panel are
two touch buttons for electronic channel two touch buttons for electronic channel
selection ('up' and 'down), slider controls for
volume and squelch, selectors for high or low volume and squelch, selectors for high or fow
power transmission and l.e.d. indicators for sig. power transmission and l.e.d. indicators for sig-
nal strenth, transmitreceive modes and chan-
nel selection. The set will be on sale in early 1982 through appointed dealers.

Do-it-yourself integrated circuits

Integrated circuits make commercial sense even or the smaller manufacturer of electronics vices (MEDL), who recently launched their System 85 - gate array design system. Gate arrays a matrix name for uncommitted logic tions to form an integrated circuit for a specific purpose. This allows a large number of wafers to be manufactured in advance which can then be completed in small numbers and in a short
time to a customer's specification. Marconi have called the system 'gate array - plus' and the
plus refers to the ability plus refers to the ability of any competent
electronic engineer, who can, for instance, lay electronic engineer, who can, for instance, lay
out a printed circuit board, to lay out the metal tracks for the integrated circuit.
To do this the engineer requires a 'design
pack' which consists of an instruction manual, pack which-gonsists of an instruction manual,
with a step-by-step procedure for manually interconnecting the gate arrays; a printed copy of
the library of cells is available and the cells are the library of cells is available and the cells are
also printed on to 'decals', self-adhesive block also printed on tepresentations of the gates which may be stuck down onto a layout sheet,
preprinted with the basic logic array. The depreprinted with the basic logic array. . The de-
sign is then sent in to Marconi who will code it ign is then sent in to Marcon who whe computer which can simulate the de-
into sign and run a series of checks to ensure that the circuit conforms to a number of design rules.
The design for the interconnect mask will then The design for the interconnect automatically. This process can be used for comparatively small production runs of a device. If subsequently larger numbers are
required the same computer information can be used to produce an Iso-Cellmos device (see
Wireless World, News of the Month, April 1981). The same computer can also produce a series of test patterns to test the device automat-
ically. If the ically. If the designer knows how to use a com-
puter, he can hire time at the Marconi Design Centre, input the data himself and verify his as a software package to be run on the designer's own computer.
System 85 is available in a family of four
devices. The MA8505 has up to 60 gates, the devices. The MA8505 has up to 560 gates, the
MA8510 has 960 gates, the MA85515 has up to 1440 gates and the MA8520 has 2014 gates fitting into a 24 -pin package.
All the manufacturing of the devices takes
place in a brand new processing plant recently place in a brand new processing plant recently
opened in Lincoln. The plant represents an
initial investment approaching $£ 15$ million and is part of MEDL's ten-year expansion plan. is part of MEDL's ten-year expansion plan.
Occupying some 100,000 ya. feet, the plant has twice that amount assigned for future expan-
sion. Five hundred people are employed there sion. Five hundred people are employed there
and the company is recruiting staff at all levels from senior engineers to factory operators. The Iso-cmos process used in the manufacture of the devices is also used by Plessey
Semiconductors and the two companies have Semiconductors and the two companies have
agreed to second-source each other's products.

- The Department of Industry has announced The UKepartment or anat arrasect which is a ven-
ture to produce a suite of design software for use ture to produce a suite of design software for use
with c.m.o.s. gate arrays. The gate arrays will with c.m.o.s. gate arrays. The gate arrays will
have up to 5,000 usable gates using oxide isohated c.m.o.s. technology and a double layer of metal interconnections. The software will simu-
late the logical behaviour of a design, automatlatly convert a proven design into pattern generator tapes from which the masks for committing the arrays can be made, and automatically produce a test patits.
used to test the resulting chips.
used to test the resulting chips. British Telecommunications, the Science and
Engineering Research Council, the Ministry oo

Defence, ICL, GEC, STC, and TMC Ltd. They ndustrial metmbers may qualify for support uner the Dol's Microelectronics Industry
Support Scheme. An outline specification has been drawn up at he Rutherford Appleton Laboratory and procipants. The SERC hopes to encourage the involvement in the project by the academic
community. The Dol is providing an indepen community. The Dol is providing an indepen-
dent chairman for the management committee and British Telecom has provided the project manager.

Channel 4 trans mitters are ready

 The first pair of television transmitters for the 4 service have been connected to their channel combiners and handed over ready for use when 1982. The two transmitters, Marconi 15 kW TypeB7445 u.h.f. equipments, have been installed and commissioned at Winterhill, Lancashire, by Marconi Communication Systems Limited Marconi is equipping a further eleven 1 BA sitits
throughout the United Kingdom with similar transmitter suites, as well as installing a one-
B7445/one-B7442 (4k \mathbf{l}) u.h.f. combination at a further thirteen sites, all for the Fourth Channel network. All these, as well as some twenty five
further sites throughout the United Kingdom are being equipped with Marconi-designed channel combining units which will enable all four television channels to be transmitted from

Mike Aldrich, managing director of
Rediffusion Computers, with a Teleputer system, one of a range of videotex
terminals that his firm believes will be at term
the centre of the 'home information system' $\begin{aligned} & \text { owards the e end of the } 1980 \text {. The } \\ & \text { terminals combine broadcast tv, videotex, }\end{aligned}$ terminals combine broadcast IV, vic
video tape recorder, video disc and
ter video tape re
telecommun
computers.

Ruth Everard, 19 months old, suffers from spinal muscular atronhy She is seen here
driving the wheelchair designed for her by driving the wheelchair designed for her by
her father, Dan Everard, who is perched
behind The behind The design departs from standard
practice by using shunt-wound motors practice by using shunt-wound moid
controlled by c.m.o.s. to give free movement in three dimensions. The seat
design is modular and can be made to fit design is modular and can be made to fit
any child; it can even be replaced with a any child, it can even be replaced with a
standing patform. Its controls require very
little strength to operate although the chair little strength to operate although ine char
is capable of carrying an adult passenger,
as shown. Ruth is learning to drive it aroun as shown. Ruth is learning to drive it about
as quickly as most children learn to walk.
The cha hat as quickly as most children learn to was
The chair has been built in the labs of Cambridge Consultants Ltd. Dan once
worked for CCL and the company have worked for CCL and the company have
contributed laboratory space and engineering effort. In 1974 CCL developed
a sensitive electronic wheelchair controller a sensitive eecciron prototypow weelchair
after working on
designed by his father for Terry Wiles ater work by on a prototy for Te whery Wilces, a
desinged
thalidomide victim. That experience has thalidomide victim. That experience has
now found another use in helping Dan with
Ruth's chair.

High-speed

Ceetax

Waiting time for BBC Ceefax pages to appear on Whiting ite for BBC Ceefax pages to appear on
the screen has been halved - and now averages
seven seven seconds. The imporovement has been
brought about by using two extra data lines. brought about by using two extra data lines.
The maximum time for a page to appear after it has been selected will be up to 14 seconds,
depending upon whether or not the chosen page depending upon whether or
has just been transmitted.
has just been transmitted.
Timed to coincide with National Teletext Timed to coincide with National Teletext
Month, October, the improved system
overcomes overcomes the problem of lengthy waiting be-
tween pages, previously considered to be a tween pages
drawback:
Colin McIntyre, editor of Ceefax, said, "We decided to use the extra lines to cut the waiting
time for the next page to appear to make the service even more attractive to the viewer. There is a great deal of enthusiasm in the trade
for Teletext and he future looks assured." for Teletext and the future looks assured".
Since the start of the service in 1974 the BBC has used two blank television lines, 17 and 18 , to carry data for each of the BBC 1 and BBC 2
magazines. Now, four lines are being used for magazines. Now, four lines are being used for
each magazine $-15,16,17$ and 18 . The digital pulses for the Ceefax and Oracle systems are
carried on the normal lelevision signals as carried on the normal television signals as the
receiver scanning spot returns to the top of the receiver scanning spot returns to the top of the
screen between pictures.

World IA of And

Three bands to

Open
he first new amateur h.f. bands to open to UK amateurs (on a secondary basis)
to from January 1,1982 . These are 10,100 to $10,150 \mathrm{kHz} ; 18,068$ to $18,168 \mathrm{kHz}$; and 24,890 to $24,990 \mathrm{kHz}$, the new allocations Conference in 1979. The 18 and 24 MHz bands remain allocated to the fixed and and mobile services until existing assignments have been transferred to new fre"exclusive" amateur allocations being made available in the UK to the "amateur" and "amateur satellite" services on a non-interference basis.
Under voluntary band-planning propo-
sals it is being recommended that sals it is being recommended that opera-
tion in the narrow (50 kHz wide) 10 MHz band should be restricted to c.w./r.t.t.y. operation. Since the Home Office is one of he first administrations to permit amateur may be rather restricted and most ama teurs will need to modify their equipment for operation on these bands.
Considerable interest is being shown by mateurs in wideband aerials that could be used effectively on the $14,18,21,24$ and
28 MHz bands, including centre-fed dipoles fed from open-wire (or 300 -ohm) balanced line and brought to resonance by means of aerial tuning units, also the classic W8JK bi-directional array and arious forms of log-periodic arrays.

Here and there

Long sea-path ducting has brought about
another 144 MHz contact between the British Isles and the Canary Islands off the coast of Africa. On September 4, a lateevening (2240 GMT) opening enabled
Richard Baker, GD8EXI in the Isle of Man to make two-way contact over distance of about 3025 km with EA8XS. Attempts were also made to use the duct on 432 MHz and while no two-way contact resulted, EA8XS reported hearing signals
from GD8EXI on that band. The year has thus seen 144 MHz from the UK with both Africa and Asia (G3VYF and 4X4IX, a 3540 km contact in June)
A distance of just over 1000 km has been
achieved by European stations on 23 GH with a two-way contact between DL7OY Germany and SM6HYG, Sweden. Weak signal reception on the microwave bands is
clearly benefiting from the availability of clearly benefiting from the availability o low-noise GaAs f.e.t. devices ""gasfets").
AMSAT-UK, the radio amateur satellite organisation of the United Kingdom, has published an A5-sized technical handbook
covering the University of Surrey amateur radio scientific satellite. The 22 -page booklet provides technical data and operatsystem, the h.f. propagation beacons and the other experiments. Non-members of AMSAT-UK can obtain copies from R. Broadbent, G3AAJ, 94 Herongate Road, includes postage) cludes postage).
the peak of solar cycle 21 , the 1981 autumn season has again seen very high maximum usable frequencies, including north/south penings on 50 MHz . Several South September 20 and ZS3E on September 27 Conditions have been good on 28 MHz .

Death of "Steve"

Roy Stevens, MBE, G2BVN who over the past two decades has played a leading and influential role in many of the national and international amateur radio activities died (1966) of the RSGB, for many years chair man of its technical and publications committee, telecommunications liaison officer and secretary and editor for the IARU UKgion 1 Divisision, he was a member of the 1979. He received the MBE in the Queen's Birthday Honours List 1980 in recognition of his work for amateur radio.
Roy Stevens was licensed in 1937 and became one of 37 amateurs in the first ists to reach France on September 5,1939 only two days after the outbreak of World War II - a draft that became known as "The Early Birds"
The deaths have also occurred of Edgar Wagner, G3BID, one of the pioneers of H. Watson, G2YD, a former honorary treasurer of the RSGB.

Interference to

 home equipment A new "Information Sheet" has been pro-duced by the RSGB's inerference tee concerning the problem of interference to domestic entertainment equipmen caused by local transmissions. This surveys the problems that can arise, explains the radio interference service operated by the Post Office on behalf of the Home Office, outlines the basic differences between interference to radio receivers and television receivers compared with other forms of domestic equipment in which
unwanted detection of local is "wholly due to deficiencies in the equip-
ment suffering the breakthrough," and provides some facts about the regulation of amateur radio. The information sheet, enitled "Domestic entertainment equipment and the radio amateur" is available from WCIN 2AE on receipt of a s.a.e.

Transatlantic anniversaries

December 1981 marks two notable anniversaries in the history of transatlantic communication: Marconi's classic, but still controversial reception at St John's, the " S " signals from Poldhu, Cornwall, a feat that many considered impossible; and he reception by Paul Godley, 2ZE, a noted American receiver designer, at Ardrossan, Scotland, of the first message to
be transmitted by amateur radio across the be transmitted by amateur radio across the
Atlantic. This came from the special station, 1BCG, set up by the Radio Club of America for the transatlantic tests orgaized in the UK by Wireless World. One of the signatories to that message was
Howard Armstrong, whose long string of inventions included the development of frequency modulation and the superhet.

In brief

The 1982 president of the RSGB will be ack Anthony, G3KQF, of Derby, curcommittee and also of its membership and representation committee . . . GB2VER, a special event station operating on h.f.
bands and 144 MHz during November, mands and 144 MHz during November of the Verulam Amateur Radio Club of St. Albans . . . Membership of the British Amateur Radio Teleprinter Group is now pproaching 900 and continues to bridge he gap between mechanical and electronic
teleprinting . . . The high cost of diese fuel on remote Pitcairn Island has limited local power supplies to about two hours a day but Tom Christian, VR6TC, is able to perate using a bank of three solar panels ontaining 36 photovoltaic cells to kee try chasers" China remains the most elusive country to work as it is now many years since regular amateur activity was permitted there, although hopes are being Efforts to increase amateur activity in Third World countries continue with the American ARRL "Goodwill Project" and the German DARC worldwide ama teur training activities in Sri-Lanka, Sudan, India, Iran, Egypt, Libya and Kenya

Current mirrors, amplifiers and dumpers

Improving the performance and application of the basic circuit
by B. Wilson, B.Sc., Ph.D., Department of Instrumentation and Analytical Science, UMIST.
 nected diode, driving an output transistor with a matched V_{BE} to produce an iden tical collector output current. The basi mathematics of its operation were des
cribed recently and will not be repeated here ${ }^{1}$. Figure 2 shows the symbol often used to signify a current mirror, indicating by an arrow both the polarity of the cur rent and the input side of the mirror. I circuit topology, the input terminal will always remain at a fixed voltage, in contrast to the output terminal which will take up a voltage detrmined by the loa ditions.
The current transfer ratio $I_{0} / I_{\text {in }}$, usually parameter when using current mirrors. It is obviously desirable that λ should be onstant, irrespective of changes in current nd output voltage. (Whilst most curren unity value of λ they can be designed fo other integral values by duplicating tranistors accordingly.)
Unfortunately, the performance of the wo-transistor mirror is often inadequate the values of the transisistor parameters in such a simple, uncompensated circuit. It can be shown ${ }^{2}$, by considering basic tran sistor operaion, hat the departure from

sistor mirror can be represented by

$\lambda_{2}=1 \pm(2 / \beta) \pm\left(V_{\mathrm{OS}} / V_{\mathrm{T}}\right)-V_{\Delta \mathrm{C}} /\left(V_{\mathrm{T}}\right)_{\mathrm{O}}$
where β is the common-emitter curren gain, V_{OS} is the difference in base-emitter olage required to produce identical col $\approx 25 \mathrm{~m} V, V_{\Delta O}$ is the difference in col lector-base voltages of the two transistor and $\left(V_{\mathrm{I}}\right)_{\mathrm{O}}$ is the Early intercept voltage a the operating point Q^{\star}.

Fig. 3. Accuracy of current transfer between input and output depends on
output voltage and output current. Ratio llis plage and oupulition. hatio $I_{0} / l_{\text {in }}$ is plotte
at up to 10 V .

The β term arises due to the effects of with the V_{OS} term being due to the mismatch in the transistors' base-emitter oltages. The contribution of the Early itercept voltage is best described as being ue to the slope in the transistor I_{C} Vs. $V_{C B}$ haracteristics. Of course all these making a general analytical evaluation quite difficult! Figure 3 illustrates the results obtained when using an RCA A3096AE transistor array, connected as two-transistor mirror and operating at
currents of $100 \mathrm{uA}, 1 \mathrm{~mA}$ and 10 mA . ypical values for the $n-p-n$ transistors in the RCA array are: $\beta=200, V_{o s}=0.3 \mathrm{mV}$ and $\left(V_{\mathrm{I}}\right)_{\mathrm{O}}=100 \mathrm{~V}$, producing error comonents of around $1 \%, 1 \%$ and $1-5 \%$ re pectively for the three contributions. raction for a two-transistor mirror is n very good, degenerating progressively

The Early intercept voltage is the in-
 projected backwards to the $-V_{\mathrm{CB}}$ axis. It it
herefore dependent on the operating poin erefore depen

Fig. 4. Addition of T_{3} helps to isolate $T_{r_{2}}$ from output voltage changes.

above a milliamp. For p-n-p transistors the
situation is even worse, because β is ver sensitive to collector current for $\mathrm{p}-\mathrm{n}-\mathrm{p}$
planar transistors, falling to extremely low planar transistors, falling to extremely low
values $(\simeq 10)$ at currents above several milliamps. The uncertainty due to V os however, is slightly reduced, since in gen eral p-n-p transistors have tighter V_{BE} matching.
The performance of a two-transistor
mirror can be greatly improved by the mirror can be greatly improved by the
addition of a third transistor, as in Figure 4, resulting in the standard Wilson current mirror. The third transistor Tr_{3} fulfils two roles; the first of which is to buffer Tr_{2}
from changes in collector voltage and remove to a large extent the voltage sensitive component in the current transfer ratio λ. less effect of ${ }^{2}$ current driven from its it is effectively second improvement arises from the redistribution of base currents within the circuit, bringing the current-transfer ratio to a second-order approxima 4 shows that, and output currents are now equal. In imilar fashion to Equation 1, the current transfer ratio for a three-transistor mirror an be represented by
$\lambda_{3}=1 \pm 2\left(\Delta \beta / \bar{\beta}^{2}\right) \pm\left(V_{\mathrm{OS}} / V_{\mathrm{T}}\right)-V_{\mathrm{BE}} /\left(V_{\mathrm{I}}\right)_{0.7}$ where $\bar{\beta}$ is the mean of the transistor current gains, $\Delta \beta$ represents the spread of β
values for the three transistors and $\left(V_{\mathrm{J}}\right)$ is the Early intercept voltage evaluated at V_{CB} operating point of approximately
0.7 V , as this is the difference between the collector voltages of Tr_{1} and Tr_{2} in a three ansistor mirror circuit. The improveent in the current-transfer ratio in this pendence orgely due to a reduced dedifference ($\sim V_{B}$) betwe Tr_{1} and $\mathrm{Tr}_{\text {. }}$. spread of $\pm 20 \%$ in current gains for th hree transistors in the mirror would 1% and -1% components of $\pm 0.2 \%$, 0 to -2% or, overall, approximately ave recently introduced monolithic thre ansistor Wilson current mirrors exhibit ing a current transfer ratio accurate to oltage capability of to a milliamp, with by paralleling transistors within the Also, ors they have produced circuits displaying alving, doubling and quadrupling funcFurther i, T1 012 and TL 014).
Furmance can be obtained by the introd perion of a fourth transistor to equalize ilector voltages of Tr_{1} and Tr_{2}, ss show Fig. 5. Note that the same symbol can be used to represent current mirrors, irres. nite β and base-emitter voltage dif ences, giving:

$$
\lambda_{4}=1 \pm 2\left(\Delta \beta / \bar{\beta}^{2}\right) \pm\left(V_{\mathrm{OS}} / V_{\mathrm{T}}\right)
$$

roducing, typically, for the CA3096AE
$1+0.1 \%+1.0 \% \sim 1+1 \%$ A comparison between the three- and
four-transistor mirrors is given in Fig. 6 .

Fig. 5. Fourth transistor equalizes input and output collector voltages,
unbalancing influences.

Fig. 6. Table shows improvement in tolerance to current and voltage variations
between circuit of Fig. 4 and that of Fig. 5 .

Fig. 7 . Voltage-controlled current source. $1 /$
is proportional to

Fig. 8 Shunt feedback instead of the serie
type in Fig. 7 produces inverting

The two sets of results were taken from the circuit of Fig. 5, with the current meters. Transistor by $41 / 2$-digit digital out to obtain the results for a three-transistor mirror. In both cases it can be seen
that the current-transfer ratios are held very constant against output voltage changes. The removal, of the Early intercept voltage error component (approximately -1%) from the four-transistor cir-
cuit is evident. In addition cuit is evident. In addition, the current
transfer ratio is maintained to higher curtranster ratio is maintained to higher cur-
rent levels because of the increased β buffering action with the four-transistor mirror. At 10 mA it is still within 1% of unity, whereas the three-transistor version has
fallen to approximately 90%. These factors fallen to approximately 90%. These factors
make the four-transistor modified Wilson mirror the best choice for circuit designs, both discrete and monolithic. For precision circuits MAT 01 AH matched transistor pairs (Precision Monolithics) can be
used for $\mathrm{Tr}_{1} \mathrm{Tr}_{2}$ and $\mathrm{Tr}_{3} \mathrm{Tr}_{4}$ to give a current-transfer ratio of unity to within 0.4%, due mainly to their very close V_{BE}

matching.

Current mirror applications

In many applications it is desirable to control the output current rather than the output voltage of a circuit, especially when driving reactive loads or current-activated
transducers. For example, a controlled current is required to produce a controlled magnetic field from an inductive coil. It is not always feasible to voltage drive the load through a high-values series resistor, particularly if a significant back e.m.f. is generated. (An appropriate example could be and cassettes.) nd cassettes.) book circuits for producing controlled bipolar output currents from ordinary operaional amplifiers using grounded sources and loads suffer from serious practical tight matching required for the resistors controlling the balance of negative and positive feedback ${ }^{3}$. Circuits requiring non-critical resistor matching that produce superior results can be designed using
four-transistor current mirrors. Both ransconductance and current amplifier configurations are possible, normally ermed voltage-controlled current source v.c.c.s.) and current controlled curren Figure 7 s.c.). respectively ransconductance amplifier (v.c.c.s.) using both n-p-n and p-n-p current mirrors here the output will be proportional to he input voltage. The RCA CA 3096 A wo $\mathrm{p}-\mathrm{n}-\mathrm{p}$ transistors, which means that wo arrays are required to construct a posi ive and negative four-transistor curren mirror pair. The current mirrors are used to sense the operational amplifier's suppl currents which, apart from the nearly con-
stant bias currents, are proportional to the output current ${ }^{4}$. A copy of the output current, whether positive or negative, is thus fed back to the inverting input terminal to be compared with the input voltage.

Fig. 9. Attenuating current feedback introduces gain into current-controlled
current source, which is similar to v.c.c.s. but without input resistor R_{T}.

Fig. 10. Transconductance amplifi
feedback and error feedforward.

Fig. 11. Practical 1A Class B current
dumping v.c.c.s.
whatsoever at the virtual earth connexion ${ }^{5}$. This topology also presents an opportu-
nity for the design of a current amplifier (c.c.c.c.) simply by removing the input resistor, leaving an amplifier with 100% negative shunt feedback derived from the
output current. Gain can be introduced output current. Gain can be introduced
into the circuit by attenuating the feedback current before it is summed at the op. amp. input. The circuit of the bipolar current amplifier in Fig. 9 uses two resistors to produce the required current atte
nuation in a manner analogous to potential divider. The current gain is then defined simply by

$$
\begin{aligned}
& \text { nply by: } \\
& G_{\mathrm{i}}=-\left(R_{1}+R_{2} / R_{1}\right) .
\end{aligned}
$$

Measurement of the input impedance of the circuit of Fig. 9 with a gain of 20 indicates 1Ω at 100 Hz , rising to 25Ω at 10 kHz . The output impedance varies in
the opposite manner, being $150 \mathrm{k} \Omega$ at the opposite manner, being $150 \mathrm{k} \Omega$ at
100 Hz dropping to $25 \mathrm{k} \Omega$ at 10 kHz . The output impedance figures could be improved if manufacturers provided a range op.-amps. with alternative output stages in place of
used.
used.
In contrast to voltage-controlled circuits, current amplifiers are required to operate from high source impedances and into low load impedances. It is still de-
sirable to null the op-amp. input offset sirable to null the op-amp. input ofset
voltage for critical work to maintain a low output offset current for lower values of source impedance. The Fig. 9 circuit pro duces an output offset current of around $10 \mu \mathrm{~A}$ with the input open circuit and the op-amp. inpur nu led to better than a mili-
volt. This offset current, caused largely by the affects of op.-amp. bias currents being reflected through the current mirrors, can be drastically reduced by connecting an equivalent bleed current to the output of
the current mirrors, point X in Figs 8 and 9. A single resistor to whichever supply rail is indicated will perform the task adequately. The most convenient method of determining the output offset current is by using a digital voltmeter to monitor the
output voltage across a temporary high valued load resistor. An output offset of less than 50 nA can be easily obtained afte adjustment. In this respect, current outpu amplifiers can be more accurate than voltage amplifiers since, under most condi-
tions, their output offset signal represents a smaller fraction of their maximum outa sm.

Current amp

 feediforwardextremely useful at low desns, whilst being readily be extended to high currents because of the restricted current handling capacity of the transistor arrays forming
the mirrors. Class AB current boosters could be used but their well known thermal limitations make it desirable to operate a high-current output stage completely in Class B where there are no critical bia adjustments. Unfortunately, the crossover
distortion produced by Class B output stages has traditionally made them unsuitstages for applications requiring precision
ablew-distortion waveform reproduction.

However, the technique of error feedfor ferred to Class B output stage, ofte, reviously employed for a voltage powe mplifier ${ }^{\text {b }}$, can be applied to current output amplifiers with very good results? An outline of the proposed method hown if Fig. 10. A feed-back voltage is output current and compared to the input oltage of the system. The resulting error oltage drives both the dumper pre-amp and the error feedforward amplifier. By hoosing a suitable gain for the error amumper and its pre-amp can be compen sated by the amplified error signal added at he output connexion. The relevant equatons for the sub-units are:

$$
\begin{aligned}
I_{\mathrm{o}} & =I_{\mathrm{d}}+I_{\mathrm{e}} \\
V_{\mathrm{f}} & =\gamma \cdot I_{\mathrm{d}} \\
V_{\mathrm{e}} & =V_{\mathrm{in}}-V_{\mathrm{f}} \\
I_{\mathrm{e}} & =T_{\mathrm{e}} \cdot V_{\mathrm{e}} \\
I_{\mathrm{d}} & =V_{\mathrm{e}} \cdot D
\end{aligned}
$$

From these equations it can be shown that:

$$
I_{\mathrm{o}}=V_{\mathrm{in} \cdot} \cdot T_{\mathrm{e}}\left(1+D / T_{\mathrm{e}}\right) /(1+\gamma \cdot D)
$$

This equation can be made insensitive to D This equation can be made insensitive variations (non-linearities) by set-
and

$$
\gamma \cdot T_{\mathrm{e}}=1
$$

The balance equation indicates that if the The balance equation indicates that if the ${ }^{1}$ is made equal to the transconductance ain T_{e} of the forward error loop, then the ain of the system becomes insensitive to on-linearitues within the Class B outpu ontributions from the Class B dumper and the error amplifier is determined by he ratio of their transconductance gains. By a suitable choice of open-loop gain and error amplifier normally supplies only mall proportion of the output current xcept during the crossover period of the dumper transistors when there is no feed back signal, and the error amplifier ransconductance of the system at balance is given by the transconductance of th error feedforward amplifier alone. The overall result of this is ideally zero distor tion at the balance condition. However, in ing current monitor A_{4} contribute thei own distortion, but this is quite small ince they only operate at low currents. One possible circuit for the combined eedforward/feedback approach is shown ier A_{3} and the dumper pre-amplifier A_{2} intended for 25 mA pk -pk maximum out put, use four-transistor mirrors a previously described. The non-linea dumper consists simply of a pair of un-
biased power transistors. A fractional copy of the dumper output current is obtained by A_{4} and returned to the input summing

ig. 12. Triangular wave 2 kHz with and Fig. 12. Triangular wav
without feedforward.
mplifier A_{1}. The feedback factor R_{4} / R_{5} is set equal to the forward error gain $\left(R_{2}\right.$ The upper trace of Fig. 12 shows a 2 kHz riangular voltage waveform across the 0Ω load resistor when the feedforward soconsected, whilst effects of adding in the feedfor ward error at the output connexion. The error-cancelling affects of the balance condition can be clearly seen, there being no discernible disturbance in the linear wave form. The bottom trace shows the error esistor for comparison. Output currents up to 1 Apk-pk. can be obtained with this ircuit, although the photographs were taken at a low current (15mApk-pk.)
where the effects of crossover distortion here the effects of crossover distortio Distortion measurements indicate that he second harmonic is 70 dB below the output at 100 mA pk-pk., rising by approxmately 10 dB at 10 mApk -pk. and 1 Apk around 100 mApk -pk, being 85 dB below he output, rising to 75 dB at 10 mApk -pk nd 80 dB at 1 Apk -pk. Second-harmoni distortion is generated by the current mir he dumper current monitor, whereas the hird harmonic is produced by the cross ver behaviour of the dumper. Higher har monics are also present, but are signifi

Reference
. Lidgey, F. J.: "Looking into current mirrors",
Wireless World, October 1979, Vol. 55, pp. 57-58. 2. Harts, B. .L., and Barker., . W. ... "DC matching
rrors in the Wisson current source", Electronics Letters, 1976, Vol. 12 , purre. 389 -390. Graeme, J. G.: "Operational amplifiers: design
 amp converter technique using supply curren
sensing", Electronics Letters, 1979, Vol. 15, pp. 4966-497. E.
5. Wison, B: "A low-distortion 5. Wilson, B: "A Iow-distortion feedback voltage
to current conversion technique", Electronics Let
ters,
 6. Waker, P. J.: ""urrent dumping audio ampli-
fier ", Wrieless. World 1975, Vol. 81 , pp. 50 .-562.
7. Wilson, B.: "Low-distortion 7. Wilson, B.: "Low-distortion high, output Clas
B current converter using error feedfor 8 current converter using error feedforward
Electronics Letters, 1981, Vol. 17, pp. 461-463.
cantly below the level of the second and hird under similar conditions. Disconnecting the error feedforward loop inmonic distortion by around 30 dB in the critical low-level output region. The relaive improvement in distortion performnce due to the feedforward connexion is maintained at higher frequencies where
the effects of uncompensated crossover the effects of uncompensated crossover
distortion become more significant. A further reduction in distortion would require a specially optimized feedforward mplifier and current monitor using Current mirror cir design tool that can be employed in most applications where a controlled current is required. In conjunction with op.-amp supply current sensing they facilitate the transconductance and current amplifiers.

Literature Received

Six-page colour brochure from Crow of Reading ives an outline of the company's accivities in
the feld of broadcast television entincering which extends from the supply and installation of a single monitor to the desgn, construction
and commissioning of large suldios and switching centres. Brochure can be had fro
Crow at PO Box 36 , Reading, Berks, RG 2 N

Important characteristics and application inevices from a number of manufacurers is preable from Microsystem Services, Duke Streel
WWV403 Wyeombe Bucks.

Small tools for use in the production of
dectronic equipment - wite strippers and cutters, board assembly zools and p.c.b. cleaning brushes - are featured in a feaflet published by Eraser International Ltd, Unit M, Portway
Industrial Estate, Andover SP103LU. WhNGO4 An extremely wide range of microwave aerials,
cables and waveguides is fully covered in a
 fie, KYS9月G.
A range of silicon controlled rectifiers and triac election guide, with main ctaracateristics and a cross reference to other makes. The guide is obtainable from TAG Semiconductors, Ltd,
$73 / 79$ Rochester Row, London SW/P 2 NX
WNMAO6
Publication HCG 1 from Highland describes th ypes of multiway connector currenty available
Teavy and light-duty ypes are made, with from 2 to 128 poles and in ratings from 88 250V to House, 8 Old Steine, Brighton, BN1 IEf.
WW4Q

Large colour catalogue from Ross illustrates
very wide range of audio equipment and acces very wide range of audio equipment and acces
sories, including heedphones, test gear, in tercorm, audio and video leads and adapters and
microphones. Ross Electronics, 49153 Pancras
Road, London NW1 20B.
WWVA08

EMP protection

Your news report in the September issue
highlights the EMP (electromagnetic pulse) highlights the EMP
threat teecriomagnetici pulse)
tho solid state threat to solid state communications equipment.
However, both Mr Tucker's article of July 2 nd in The Gurrdian and your report tend to give a misteading impression of the steps which
being taken to counteract the threat being taken to counteract the three." "far too rapid for any currently avaiable protection systems", My company has available a asa-filled
protection device which will operate in less than protection device which will operate in iess thar
one nanosceond. It has been shown that this device will protect solid stater receivers and
telephone equipment in asmulted EMP telephone equipment in a simuluated EM
envirionment. We find that suppliers of communications equipment are well aware of
the threat and have taken steps to ocounteract it. and Protective Techniques" was published by John Wiley and Sons in 1976 .
The M-O Valve Co. Ltd
Hammersmith
London $W 6$

Television

 subtitlingI was very pleased to see your report on "TV
subtites for the deaf 'in September's Wireless subbites for the deaf" in September's W Wireless
Worrd, in which you review my "Guidelines for the subbitinin of television programmes")
would however, like to clarifif one or two points.
 betwer Wedding) and subutiting the general run
Royal of recorded program mes. The pubbished
©Cuid "Guidelines" from Southampton Unievesity do
not gointo ive subtiting in any depth since not go into ive subtiting in any depth, since
this particular area is sill under investigation
 teletext subbitiling of rearded belevision programmes, and they have been in use at ITV
Oracle for several months The coverage of the Royal Wedding, on the other hand, refecteced the state of the art of l ive on BBC Were wenerated by means of the $\underset{\text { Palantype semi-phonetic machine shorthand }}{ }$ syster, capable of producing a word for wor
runscreniotion of pech
and some words spelt unconventionally. .TV Oracle's coverage represented a radically different approach to tive sububiting. In this
case, sububutes were transmitted in the oform of
 On a standard e evboard in standard English
speling The Tho sand cons of feses wo on selling. The erys and ind cons of these two alternative methods are e currently ynder review
I would also like to expand on your editionial comment on lipreading. This is an important point and it has received considerable a atention during the research proiectat Southampton Of atwo-dimensional televvision piecture is extremely difficult, especially when speakers are
frequenty in hall-profile, facing away from the frequunty in hali-profile, facing away from the
camera, too distant, of out of s shot attogether. In spite of this we do give consideration to th
(ses page 12 of the "Guidelines"). This is done by carrying out scriptediting in close coniunction with the original script and the
videotape, especially when the speaker is presented in full-face head and spoulderers close. up or middle distance shot. Nevertheless we
place a far higher remmum on providing Place afa higher premium on providing
subtites in familiari language with adequate reading time, without which the viewer will have no opporanuilis 10 attempt to lipread the speaker in any case.
Department of Electronics
Southampton University

Decline of the philosophical spirit

How refreshing to see your July editorial on the
dearth of tuu enhilsosphicu line dearth of true philsosophical thinking in science.
It it because science and technology have come It is because science and technology have come
to be motivated by pragmatic materialism that we have become too cynical as aspecies to aspire
to civilistion. The spirit o e enviry has bent to civilisation. The spiritit of enquiry has been
replaced by militarism and social
ussification. Money no longer serves as a token of currency alonene, it has become the primary structure upon
which our sociery is organised. Economics is no
 significant human progress and coull be for decades, if not centuries, to come.
This kind of outlok has namrowed the thrust of pure research into unimaginative and
analysis. The quust to reduce the nown universe into an elegant set of mathematical relationships, while commendable in its own
right, isimpotent if on right, is impotenctif no philsosphical
conclusions are drawn from the end result Pure research should not be confuses results. t . layman with an a atemppto to explain' anything. In
obtaninig a degre in inysics Icme obtaining a degree in physiss came to realise
that this most fundamenal of d discipinines seeks only to describe and not to explain. We are no closer to onderstanding whata magneecic field is limply in better position to describe and

s. | expoititits propertie |
| :--- |
| Terry Edwards |

\section*{| Onnger |
| :--- |
| Essex |}

Television for no-signal areas A great deal of 'doubtrul' technical and Witeresescial World The tow being offered through introouuction to the latrere which, in my opinion, is compleetly out of place in this excellent
technical iounal Perhans the followin lechnical journal. Perhaps she following points
should beread in coniunction with he leterer from M. J. Rutry (September leterers) to further assist the lay persons normally expected to
conside these shenes consider these schemes.

1. Theoretically a doubli
.

demann eight such aerials ceighty lements)
efficienty
not not be achieved. However, aerials with
claimed
gains of p plus 9 dib relative to the 10 clamed gains of plus dar reative to tine 100 1981) are manufactured by cerntain compencenies. Unfortunately, the basis choice of aerial is
normully determineab all the parameers in normally determined by all the p .
practice and not merely the gain. practice and not merery the gain.
Additionally, if minimising the possibility of interfering with other viewers depends on th choice of different commercial aerials, serious
consideration should be given to this problen before proceeding.
2. The use of a.c. line powering does not
eliminate voltage drops but does overcome eliminate voltage drops but does overcome the
electrolytic problems associated with d.c. line electroyytic problems associated with d.c. lin
powering. Wolsey iline powered equipment
employs 55 V a.c. (nominal) which employs 55 V a.c. (nominal) which, for a given
power consumption, minimises the cable power consumption, minimises the cable
voltage drops calculated for each system. Powering of some systems demands long cable
runs which should be considered carefully,
 especially if coaxial cable carrying r.f. signal
addition to line power feeding is employed.
3. Ferrite splitter/combiner units can be used,
in place of cable matching sections, for multiple in place of cable matching sections, for mu
transmitter aerial systems but impedance transmitter aerial systems but impedance
problems associaied with certain cheap problems associated with certain cheap
imported units can result in unsatisfactory end
results.
4. For active deflector systems the Home Office 4. For active deflector systems the Home Offic
has stipulated a maximum e.r.p.of 1 watt,
which in practice means a 53 mW transmitter power fed to an aerial of 12 dB gain. To make
full use of the dynamic range of such an amplifier demands accurate signal level setting
after all derating and other allowances have been amplifier demands accurate signal level setuing
after all derating and other allowances have bee ${ }_{\text {mide }}^{\text {made. }}$
With the variations of portable television
receiver sensitivities, viewing error and th receiver sensitivities, viewing error and the
unpredictable additive error of the common ${ }^{\text {(B/L }}$ type) v.h.f. attenuators used in practice 'eyeballing' tests are really not on
5. The a anount of pre-amplification employed
to drive any system output amplifier depends or its gain and output capability, for a specified level of measured distortion. This preamplification will derate the specified output,
and, depending on the equipment employed can be the limiting factor. Use of an attenuator
between the aerial output and prea between the aerial output and pre-amplifier
input stage will usually degrade the signal-to input stage will usually degrade the sig necessary its position must be carefully chosen.
6. Solar or wind generator powering can be 6. Solar or wind generator powering can successful under certain well defined
conditions. However, the use of such schemes is
fraught with difficiculties if the fraught with difficultties if the 'arithmeticic' is not
carefully carried out and if wrong carefully carried out and, if wrong, can result in
frequent trips to the site with freshly charged batteries!
7. A maximum usable line of sight range
u.h.f. frequencies cannot be stated without reference to maximum e....p., propagation loss, specifications etc. In practice this can vary from
s. $1 / 4$ mile to 3 mile
8. Finally, may I say 8. Finally, may I say that the most importan
consideration of self-help schemes is technica backing and not cut-price equipment of
doubful specification and performance. In doubtful specification and performance.
television distribution systems we have experienced the result of a low level of
ent experienced the result of a low level of
engineering expertise. It would be sad to see

WIRELESS WORLD DECEMBER 1981
do not employ a 'neat' sensation vocabulary. W describe particular sensations by referring to
how common obiects regularly look, sound and how common obiects regularly look, sound and
feel to any normal person." (pp. 202-203, ""he
Concept of Mind"). I would conclude therefore, that so long as there are plenty of fairly normal persons about we can still have a considerable
amount of objectivity in our dealings with each amount of objectivity in our daalings with each
other. Hence objectivity certainly need not te only a dream, though it may be a matter of
understanding, and therefore criticising and discussing each other's use of language. Peter G. M. Dawe
Oxford

From discussions with Mr Dawe it emerges that his
understanding of the word "ahenomeno" is differe From discussions with Mr Dawe it emerges shat his
understanding of the eord "phenomeno" is idferent
from ours. In our March editoria it was sud as
fine fined in the O.E.D. - something that appears or is
perceived. - Ed.

'Unpublished' D/F

 beaconsHaving coaxed my ageing faculties to restore à rather sophisticated marine radio receive
(Derritron DTF 70 with ferrie "loo") Derritron D/F 70 with ferrite "loop") to on the beacon band. Dungeness $(310.3 \mathrm{kHz}$)
vields the strongest signal here and is yields the strongest signal here and is one of a chain of beacons operating on the same
frequency in succession. It came in loud and cear, followed by the others at acceptable, eaker levels. However, during the whole of th chain cycle a weaker DU signal persisted
the loop indicated it was co-sited with Dungeness proper.
I telephoned North Foreland Radio, Dungeness Coast Guard, RN Radio Centre, nally Trinity House "Lights", London. The last named, after some delay,
me back with an explanation.
It appears that an experimental transmitter is now operating at Dungeness on " 311.5 kHz ," using same call sign DU. It is "unpublished"-
whatever that means - and "will not go on for long". I pointed out to my informant that the two frequencies were only separated by less that 0.4% and that most D/F receivers would not
discriminate to that extent In any case it is conceivable that the requisite filters would not be switched in if the operator was not alerted to
the danger. He said he "ook my point" the danger. He said he "took my point".
The situation seems potentially dangerout
a yachtsman at certain points in the Channel, taking a bearing on, say, Cap Gris Nez,
310.3 kHz , could have it "bent" by the 310.3 kHz , could have it "bent" by the
"unpublished" Dungeness on 311.5 kHz radiating at the same time.
On what authority can. one start up these
"unpublished" transmissions. Is it permissible to have two transmitters on differing frequencies sharing the same call sign? Is there not a central authority monitoring all UK trying to identify their origins? Frank Henry,
Chatham,
Kent.

Wien bridge

improvement

Linsley Hood's sticle on an improved Wie

 Mr Lide oscillator (May issue) soon had medigging out my 1974 design notes on similar work.
One of the disadvantages of the basic Wien

$a=\frac{1}{2-\frac{R_{2}}{R_{1}}} \quad R_{2}<2 R$, for stable operation

Fg.
discrimination against harmonics. It therefore eemed sensible to use the Q multiplying introduced by the stabilising amplifier is ejected by the relatively narrow band-pass
characteristic of the tuned amplifier. Fig. A reduces to Fig. 4 of the article if $R_{2} / R_{1}=0$ $Q=1 / 2$ with the important difference that the output is taken from A_{1}. With a Q of 4 , ove distortion was obtained, this being the prime design objective. For satisfactory operation the bviously be well matched.
Of course, the main design feature of Mr Linsley Hood's article is the elimination of the
common mode signal at A_{1}. My circuit did not common mode siggal a dicce . My circuin did not amplifier was used to minimise common mode
Fig. B offers the possibility of Q multiplication with no common mode problems and might lead to an optimum distortion performance across the band.
Finally,
Fassume the gremlins have crept into Fig. 5 of the article. A_{2} should in fact be inverting.
Bil Young
Cobham
Cobham
Surrey

The author replies:

have read Mr Young's contributions with interest, and note his suggestion that the
harmonic distortion introduced by the stabilising circuit may be reduced if the output is taken from the tuned amplifier rather than
from the output of the stabilising amplifier. Mray I apologise, in this context, for the two
Mrier errors in the article. As Mr Young indicates, A_{2}
should be shown as an inverting amplifier, in
, cases, and the illustraions shown as Fig. nd Fig. 5 should be interchanged.

The death of

electric current

In his September 1981 letter, R. T. Lamb seem
to think that if he establishes that we are merely is hink that if he establishes that we are merely
discussing a model rather than a theory or a fact he has also established that a bad model is no worse than a better model. When he writes, is not needed in that model,"'I would reply tha ne successful removal of primitives such as p no
mportant that unnecessary accretions pe cleared away from a model (cf. Occam's Razor)
This is particularly true if these accretions Teate insurmountable difficulties - see my first two paragraphs, August 1981 issue, page 0. Why hold on grimly to redundant imitives, ρ and \mathcal{F}, if they create the insoluble unlike me) that a mere model is in dispute, why In tenacity?
In the first paragraph of his letter in the
arch issue, Lamb accepts the reciprocating model for a charged capacitor as true. This model, when used in the discharge of a capacito-
through a resistor, does not result in an exponential, as Lamb suggested on page 46 exponential, as Lamb suggested on page 46 of
the September isue. Using time domain reflectometry, my colleague Malcolm Davids has experimentally established that when a
resistor is switched across a charged capacitor the result is a series of steps (similar to the appendix to our articl Displacement Curren in the December
exponential.
expor Cantal
IVortat
St Ibans
Herts

Mr Ivor Catt's assertion (August Letters) that conventional electromagnetic theory cannot cope with transients for which it was specifically
developed is, to say the least developed is, to say the least, a trifle rich.
Tilting at the giants of our great heritage scientific understanding is a useful pastime, even if it only serves to stimulate the thinking of
others. Ithink that Mr Catt others. It think that Mr Catt has some fundamental misunderstandings of conventional
theory which is giving rise to some difficulty in theory which is giving rise
having his own accepted.
A conductor cannot have an electric fis A conductor cannot have an electric field in
it; the wires of a transmission line cannot have it, the wires of a transmission line cannot have
an electric field along their length but Mr Catt's
Augus August letter shows a defificincy of charge to th
right of his wavefront, sination which right of his wavefront, a situation which would
result in a field along the axis of the wire, the advancing down a wire like peas down a tube. A
conductor is a region with a large number of free conductor is a region with a large number of free
carriers in charge equilibrium with fixed carriers; a metal wire has a large number of free electrons in charge equilibrium with the
positively charged nuclei. These electrons positively charged nuclei. These electrons
interact with electric potentials external to the interact with electric potentials external to the
wire in a manner described by the equations of Maxwell. This can be verified experimentally. Mr Catr's crude model is thus fundamentally
wrong. The model of a wire full of free carriers is also quite crude but at least it is fundamentally correct. In this model it is
reasonable to describe the wavefront as the reasiding line between that region where carriers have started to move and that where they are not yet disturbed by the approaching wave. It is, of course, fairly common knowledge that the
approaching wave is external to the conducto (it cannot be insides see above) and it influences
the surface charges first (skin effect). the surface charges first (skin effect). Mr Catt's contributions on e.m. theory are same sort. In March 1979 he quotes
conventional theory (using displacem conventional theory (using displacement
current) as requiring two components for current) as requiring two components for
charging a transmission line, $i+\mathrm{d} D / \mathrm{d} t$ (p. 68) where is the line charging current and d D D $\mathrm{d} t$ is the Maxwellian displacement current. But the line charging current is the displacement
current according to Maxwell's laws; it is nonsense double them up.
In July 1979 ("The Heavis
In July 1979 ("The Heaviside Signal") he
defines:
$\sqrt{1}$:-in
$\frac{\cos }{H} \sqrt{\frac{1}{5}}$
all nonsense. Why? Because E, H and B are all
vectors andu and d are scalars. hat they cannn ϵ are scalars. Surely he knows Maxwell's laws ara concerned with electric
and magnetic fields. In Mr Catt's, charge and magnetic fields. In Mr Catt's, charge
appears to give rise to neither. Will he be announcing the death of electric charge next?
Dermod J. O'Reilly Dermod J. O'Reilly
Antwerp
Antwerp
Belgium

The big c.b. con

The proponents of citizen's band radio,
including the suppliers of a.m. equipment, are really leading our fellow countrymen into the largest confidence trick imaginable by playing
on the fact that little is known technically about on the fact that little is known technicalls about
types of modulation, propagation, sun-spot cycles etc. and on the desire to do as others are doing - including their mistakes.
Having monitored the 27 MHz b Having monitored the 27MHz band in my
area, Inave yet to hear any UK operator talking to anyone outside his local (groundwave)
territory, although no doubt a small number do territory, although no doubt a small number do.
Language is still a major barrier and Great Brituage is still a major barrier and Great have English as their native language, whereas the USA is large enough on its own to receive its
own generated transmissions on sky-wave. I think that, apart from the above deceptio the final con. will be evident when sales of a. m .
equipment level off due to saturation in equipment level off due to saturation in this
country and, as may well be explained, "a new range of equipment giving less interference and with more efficent transmitter stages" will
tempt UK operators into spending yet more empt UK operators into spending yet more
money on "improved" equipment - yes f.m. Come on all you c.b. associations, importers
and markeúng organisations, play the game and Office have been far seeing enough to get it
right. Wheeler, G 8 EMU
T. G. Whber Glos.

Thyristor

interference
Many thanks to John Flewitt for his very interesting article in the September issue on the
$B B C$ sound broadcasting and recording at $S t$ BBC sound broadcasting and recording at St
Paul's for the Royal Wedding. I was very surprised, however, to learn that trouble was
experienced from thyristor interference in the experienced from th
microphone cables.
In 1964, when I was in the BBC Designs Department, thyristor dimmers were just rearing their ugly waveforms at Television
Centre, and I was asked to see what could be Centre, and I was asked to see what could b
done to prevent the interference that had already become a serious problem with standard twisted-pair microphone cables.
To shorten a long story, I developed a tightTo shorten a long story, I developed a tight-
twist star-quad microphone cable which reduced interference, in the worst conditions when crossing a cable feeding a 10 kW spot, to below the first became known as "blue quad" has been manufactured by the mile and has become mandatory in all television studios, both in the BBC and later in ITV.
True, the blue quad
following the use of chroma key or colou separation, and it has also become thinner and
lighter than its ancestor lighter than its ancestor. But you can still see it
on any television picture where a microphone is in anyt.
Of course these problems do not normally beset the sound broadcasting engineer. But I
would have supposed that someone, somehow, would have passed the word. Virtually all thyristor interference is coupled to microphone pair (or quad) ordinary braid or spiral screening is arilipquate. Marks
Bourne End
Bucks

Ethics in action

 Your correspondent Jock Hall (June letters)should be asked "Where are these employers should be asked "Where are these employers
producing electronic equipment of real use to producing electronic equipment of real use
society, and how many can they employ?" society, and how many can they employ"?
After the war I returned to radio servicing. It
was was an interesting challenge to get sets from the
early thiries and with what valves and early thiries and with what valves and components were available to reproduce a good
standard of performance. Then came the new sets and disappointment; the only apparent
lesson learnt from war-time developments was lesson learnt from war-time developments was
how to cut material to the bone. One turned a how to cut material to the eone. One turned a cans breaking away from their moorings. Then came television, and after a while real
concern. People with tears in their eyes concern. People with tears in their eyes
pleading, "Please repair it here, don't take it way, we don't know what we would do without it". Family quarrels to get children to bed or to
do their homework. Visiting friends or relations and not being able to talk because the telly was
on. By the early fifties the novelty had not worn By the early fifties the novelty had not wo
off; the position was worse as so many more people had television. I felt I was helping to create moronss tod drive epeople mad, so, at a
considerably reduced salry Ministry of Defence inspectorate work in a Ministry ork was interesting, there could be
The work
pride in a product well made and built to last, first use. To begin with there was reasonable hope that these devices would never be used. If that hope has now gone then the distraction of the phantasy world of television, drawing
attention away from events in the real world must take a large share of the blame. The advent of ITV led to fierce competition
with the BBC for if one side captures the mass with the BBC for if one side captures the mass
audience the other goes out of business. The adience the other goos out of business. The
direction this fight took was that of more violence, more sex, more trite, easily assimilated
material of appeal to the less discerning. Less discernment seems to breed even less
discernment, for how often does one observe an discernment, for how often does one observe an
audience around a colour television apparently unaware that there is something odd about
characters with green or purple hair. characters with green or purple hair.
I remember a time when BBC news I remerber a time when BBC news gave
minimal reporting of murder trials. What a change! Half a news bulletin followed by a half hour substituted programme on a mass
murderer. I remember when dance music had murderer. I remember when dance mus
lyrics of more than four words and was melodious, and its merit was not judged on kilowatts out, or electronic gimmickry. II
remember when children played energetic remember whin conildren payed energetic play Star Wars.
industry and has built things gimmicks industry and has built things not meant to la
very long. The most common faults in televisions now are cracked tracks on flimsy
circuit boards and overrun resistors that chang circuit boards and overrun resistors that change
value or go $o /$. This is poor design. The real developments are held up until sale of older systems reach saturation. Baird demonstrated
3D colour television in the forties - remember? I suspect this last condemnation may apply to even such things as medical electronic device
One can hardly expect such a journal as One can hardly expect such a journal as
Wireless W orld to take up the matter of a general Wireless W ord to to take up the matter of a general
decline in levels of discernment, but where it affects the evhhics of engineers, ,please, give it full
publicity. [See November editorial - Ed.] publicity. [See
E. . Hurran
Margate Margate
Kent

Radio amateurs'

licence

Your correspondent M: Jackson (October Letters) has made a useful suggestion regarding
the use of c . w . by class ' B ' radio amateurs on v.h.f. but I Io not think that any responsible
amateur can agree with the following of his proposals:
proposals
(a) The use of non type-approved equipment on
c.b. Most amateur h.f. equipment tas a power c.b. Most amateur h.f. equipment has a power
output far greater than 4 watts and so would not output far greater than 4 watts and so would no
meet the Home Office requirements. Also, amateur h.f. equipment is not suitable for channelized operation.
(b) Amateurs to use c.b. at no extra licence fee
This is a dangerous suggestion well result in counter proposals from c.b'ers to use the amateur bands prop no no extrat fee. (c) 10 -metre band to be used by class ' B ' radio amateurs. Class ' B ' licencees can already gain access to the 10 metre band by akking the Morse
test like everyone else It is a fallay to think test like everyone else! It is a fallacy to think
that 10 metres will be taken over by the c.bers. that 10 metres will be taken over by the c.b'ers.
Far from being a threat to amateur radio in this country, c .b, should result in the swelling of amateur ranks in the coming years. Alread in ceis area c.b'ers are preparing for the December Radio Amat

1. Buftham, G3TMA

What would you give an Engineer interested in learning about microprocessors?

Our microprocessor course...

gives you this fully assembled micro processor development system. It is just one component in our new, practical, home-study course for engineers.

The course
ases on product focuses on product design to give you a
thorough grounding in horough grounding in
the use of microprocessors
by taking you step-by-step by taking you step-by-step
rom customer specification to inal production design. Without assuming detailed knowledge of
electronics or computing on your part, the course shows you how to approach software development, prototype evaluation and final production. As well as working through five
pecially prepared books, and familiari specially prepared books, and familiarising yourself with a file of manufacturers' data shee
and brochures, you will carry out experiments and brochures, you will carry out experiments
designed to give you valuable practical experience with your microcomputer.

Complete with user manual and experiment books,
You also get a prototype development board with such peripheral
as a small DC motor, temperature sensor, optodetector and loud-
speakr- Whinhyoulam oodnve wn tue mecocompurn
The Open University
The Open University, FREEPOST, P.O. Box 188
Sherwood House, Milton Keynes, MK3 6 HH

The course is completely self-contained, and not linked to
broadcasts, correspondence tuition, seminars or residential any broadcasts, correspondence tuition, seminars or residential
courses. You work home in your own time and at your own pace courses. You work at home in your own time and at your own pace
to complete the course. At $£ 395$ the course offers you the courses. You work at home in your own
to complete the course. At $£ 395$ the cour
perfect opportunity to gain practical
microprocessor experience.
Send the coupo for \& $+\sqrt{2}+8+8$ Send the coupon for further details-
no stamp needed. Or phone 090879058 no stamp needed. Or phone 09879058 (24 hour answe
service)

The EP4000 is not just an EPROM Programmer . .

Not only does the
EP4000 copy, store,
program and duplicate
the 2704/2708/2716(3) /2508/2758/2716/2516/2532 and 2732 EPROMs without personality cards or modules, but also includes a video output for memory map display to make the powerful editing facilities really useful (and this is in addition to the in-built LED display for stand-alone use), but it also comes as standard with comprehensive input/output - RS232, 20 mA loop, TTL parallel handshake, cassette, printer and direct memory access. Now the programming power can be expanded with our range of add-on accessories listed below.

. . . but also a Real Time EPROM Emulator
Real time EPROM Emulation is the second major function of the EP4000. This facility allows the machine to directly replace your incircuit EPROMs during the process of program development - the EP4000 can be configured to look like any EPROM it is capable of
programming. The press of a button isolates
. . . with real technical back-up and service.

The EP4000 comes with a technical manual describing every aspect of the machine - its purpose, its use, and how to use it. It also has a section describing the whole process of program development.
And if you ever need technical help or advice, you can now dial direct to our technical department for instant attention - Tel. (0803) 863380 .
Finally, a full range of accessories in now available - these include Bipolar programming
the external system so that data changes entries, editing and downloading can be implemented. When the program is complete and working, the simulator cable can be replaced by an EPROM programmed by the EP4000.

G.P. Industrial Electronics Ltd.

Unit 6, Totnes Industrial Estate Totnes, Devon TQ9 5XL
Tel. Sales (0803) 863360. Technical (0803) 863380
Telex: 42596 GPELEC
modules, multi-EPROM simulator adaptors, buffer pods, EPROM Erasers, video monitors, 2764/2564 programming satellite, printer and production programmers. The EP4000 is exstock. Price - £545 + VAT ($+£ 12$ for DATAPOST delivery). Telephone, telex, write or call for full data and Distributor list, or place your order for immediate despatch - Overseas customers, please telex or write for quotation and terms. Agents in some countries, and and terms. Agents in some count
distributors in Britain required.

New BBC/OU production centre opens

by Donald Aldous

In late September production started a Europe's biggest purpose-built educationa broadcasting complex, on the campus of
the Open University at Milton Keynes, the Open University at Milton Keynes,
Buckinghamshire. Robert Rowland, head of the new centre, describes the OU as 'the largest university in the kingdom'.
The start of production at the centre is
the culmination of the culmination of some ten years' efforts to create and manage the physical de-
velopment of the university's 70 acre campus and 13 regional properties, since the OU was established in 1969. The original production facility was at Alexandra Palace, London, and the new site will offer a more convenient working
relationship for OU and BBC colleagues on the course teams that compile and produce all OU study material.
This project has cost over $£ 8$ million, funded by the Department of Education and Science, and is not extracted in any
way from the BBC television licence fee, as way from the BBC terevision licence fee, as In fact, the OU's yearly fee to the BBC for production and transmission of programmes is currently around $£ 8.3$ million. Total floor area of the building is $11,100 \mathrm{~m}$
gross, $8.500 \mathrm{~m}^{2}$ net. (The difference is gross, $8.50 \mathrm{~m}^{2}$ net. (The difference etc.). The building is supported by 504 reinforced concrete piles, each individually driven into the ground over a period of The reactions of the OU staff working on the campus at that time can be imagined! The technical areas are interconnected by 40,000 metres of cable. The power distribution cables add up to a similar
total, which in combination would cover the distance between London and Milton Keynes. Electric power reaches the building's own substation at 11 kV , 3-phase, where it is transformed down to 415 V fo The centre at Walton Hall, as it is known, consists of an office block and a technical block, joined together at a main reception area. The technical block contains two tv studios: Studio 1 has a floo
space of 336 square metres and Studio space of 336 square metres and Studio 2
has 102 square metres. Studio 1 is a small has $\begin{aligned} & \text { production studio with four Link } 110\end{aligned}$ colour cameras, and the production suite is at ground floor level to permit easy access. This arrangement is in contrast to the
usual high level gallery with observation usual high level gallery with observation
The production control suite has separate control, vision and lighting control, and sound control rooms. The desks and monitor stacks are positioned so
as to allow direct line-of-sight between the as tirector and staff seated at the desk in the
diter production control room and the personnel in the other two rooms.
The vision control room has a Grass

Valley 16 -channel, 4 -bank vision mixer with multiple re-entry, chroma-key and with multeple re-entry, chroma-key and
comprehensive wipe pattern generators. The chroma-key incorporates the BBC fringe suppression system. Lighting is controlled by means of a Thornlite 500 microprocessor based system with 200
dimmer channels and 200 memory files. The sound control room has a 20 -chan nel/4-group control desk built to a standard BBC specification, two Studer A80 $1 / 4$-in tape recorders and two BBC designed disc reproducers. There is also recorder and other equipment for postproduction editing.
Studio 2 has been equipped for operation on a 'drive-in' basis with a colour been confined to production lighting and cabling to a connection point in the nearby outside broadcast base, where the vehicle will be parked when used in this mode.

Sound suite

There are two studios in the sound suite, one of 104 square metres and the other a
small talks studio of 20 square metres. The larger studio is equipped for drama and music with a Calrec Mk. 2 19-channel general purpose stereo desk, the Studer tape equipment, and BBC disc reproducers The adjacent talks studio, which also
serves as a quality check room, houses two serves as a quaiity check room, houses two
tape machines and one disc player. Control is from a Glensound desk fitted for seven stereo and four mono channels.

This suite also contains three editing transfer rooms, each with three tape disc room' for listening to the conten rather than the technical quality of the material, a tape store, an office and a main material; a tap.
tenance room.

Central technical area

This area is divided into a number of roms for video tape recorders, a vide telecine, a tv quality check room, maintenance and tv apparatus rooms. Four of the six videotape cubicles will be equipped with broadcast quality machines (Ampex) recorders for producing copies of pro grammes for distribution to OU study centres and libraries.
The video rostrum able help to OU's insarable an invalugraphic material. After five years' use at AP, the video rostrum - with its computer controlled camera recording direct on to video tape - remains unique to the production centre. This rostrum enables
animation and caption sequences to checked during recording
It is noteworthy that equipment to the value of about $£ 1.5 \mathrm{~m}$ has been transferred from Alexandra Palace. This was originally bought and installed in 1974/5, when it
was decided that OU tv programmes should be made in colour. Without this equipment, the total cost of the new centre would have been around $£ 10 \mathrm{~m}$.

Circuit Ideas

Micropower

 voltage regulator In battery powered systems which require needed to stabilize the voltage as the battery decays. Unfortunately, most i.c. voltage regulators require several milliamps of quiescent current, which makesthem impractical for micropower applicathem impractical for micropower applica-
tions. Zener diodes may also be impractical because of short term peak current requirements.
Instead of the traditional bipolar approach, this regulator uses a i.f.e.t. as the
series pass element which does not require pre-regulation because the drive comes from the regulated output. Also, the gatesource is isolated from the line by the drain, which provides high line regulation. This is not the case with p.n.p. pass ele-
ments where the emitter is the input. Finally, and most important for low power regulation, the f.e.t. requires no current drive.
The emitter-base breakdown voltage of Tr_{3} is used as a reference $(\approx 7.2 \mathrm{~V})$ in con-
junction with Tr_{2} to form a shunt regula tor. Shunt current drives a current mirror, $\mathrm{Tr}_{4}-\mathrm{Tr}_{5}$, which produces the gate drive voltage for the f.e.t. The value of the shunt current is determined by R_{3} and $V_{G S}$ of the
f.e.t. $\left(I_{\text {R3 }} \approx I\right.$ surn). High load currents will reduce the shunt current because $V_{G S}$ is lower. Temperature stability is achieved with the $B V_{\mathrm{EB}}$ drift of Tr_{3}, which result in a negative drift at the base of Tr_{2} and the output of $1 \mathrm{mV} /$ deg. C. than the load current at all temperater ($I_{D S S}$ has a temperature coefficient of $\approx-0.7 \% / \mathrm{deg} . \mathrm{C}$) and the breakdown voltage should be greater than the maximum input voltage. Linear operation re
quires the f.e.t. drain-to-gate voltage V to be greater than the pinch-off voltage V_{P} By operating the f.e.t. at currents much less than $I_{\text {DSS }}$ the gate-to-source voltag will be close to V_{P} which allows smal drain-to-source voltages. Therefore, for linear operation

$$
\begin{aligned}
& \left|V_{\mathrm{DG}}\right|>\left|V_{\mathrm{P}}\right| \\
& V_{\mathrm{DG}}=V_{\mathrm{DS}}-V_{\mathrm{GS}}
\end{aligned}
$$

For higher loads several f.e.ts can be paralleled without matching.
With a 10 V output the line regulation is typically $\pm 0.05 \%$. Load regulation is 0.2% from $10 \mu \mathrm{~A}$ to $10 \mathrm{~mA}\left(Z_{0} \approx 10 \Omega\right)$ and temperature stability is $-1 \mathrm{mV} / \mathrm{deg} . \mathrm{C}$. The
output voltage is given by $V_{\mathrm{BE}}\left(2+R_{1} / R_{2}\right)$

The mains transformer can be used in its original form, but a higher output curren can be obtained if the low voltage winding melled copper wire. The number of turns on the higher voltage winding can be reduced to lower the output voltage and indetails are shown in the table.
Simple voltage control can be achieved by connecting a suitable high value resistor between the rectifier negative and negative
rail.
R. C. T. Stead

Hampton
Middx.

Improving

converter

efficiency

The efficiency of a simple converter can be improved by using a rectified output derived from the input winding. This simple given output current and increases the output voltage. Also, the output short-circuit current approaches the input current. This form of converter is well suited for variable voltage inputs such as solar-cell panels,
especially as no reverse-current input diode is required when the cells are in darkness.
$+B V_{\mathrm{EB}}\left(1+R_{1} / R_{2}\right)$ and can be trimmed by adding a potentiometer at
Tr_{2} base junction to eliminate $B V_{E B}, R_{2}$ variations or to make the output variable over a limited range. Temperature stability can be improved by replacing Tr_{3} with an 8.2 V Zener diode, whose temperature drift of about $+4 \mathrm{~m} /$ deg. co will nearly match the cent current with the values shown is
about $4 \mu \mathrm{~A}$
J. Maxwell
J. Maxwell

Santa Clar
U.S.A

WIRELESS WORLD DECEMBER 1981

Fusible-link p.r.o.m. programmer

Fusible-link p.r.o.ms such as the SN74S288 and SN74S188 can be programmed directly and, by adding up to and using a larger socket, the following devices can also be programmed.
745287 \}
74 S 387)
8 inputs 4 outputs
745470)
74S471 $\}$
8 inputs 8 outputs
745472)
745473
9 inputs 8 outputs
Als5o, data can be easily verified before or after programming. These small low-cos ments by programming the desired truth table into the device. Although they are not low-power memories, they can reduce
por by repacing several pack ages. e.ds monitor the data outputs via invert ers. The device is addressed by a 4040 push button. The address is monitored by afurther five l.e.ds and inverters and, in a 5 -bit address range, a reset button is no necessary. For larger p.r.o.ms, a reset buton can be added across C_{4}. Switch S should be set to 0 or 9 during the reading. be set and the bit to be programmed high (the 74S288 is supplied with all locations low) is selected by S_{3}. This saturates one of he eight transistors and clamps the dat atputs low. S_{2} is then pressed to trigger the 4017 counter. The counter outputs sequentially set and reset two flip-flops to give outputs $\mathrm{Q}_{1}, \mathrm{Q}_{2}$ as shown in the timing iagram. Chip select on the p.r.o.m.
ken high, a +10.5 V program pulse pplied to $\mathrm{V}_{\text {cc }}$ for 4 clock cycles, and for taken low to program the bit
Flip-flop 3 is reset on the ninth clock ycle and stops the program cycle. Capa fops to the correct initial states, and th 3 k 9 resistors apply the correct loads to the unprogrammed outputs during the pro ramming cycle. Diode D_{1} disconnects the +5 V supply to the p.r.o.m. during proramming
nd the only supply should be rated e only important constructional not etween that low resistance path exis istors oV emitters of the eight tran round, so that the programmed bit is held low and a 750 mA current pulse flows through it.
S. Kirby
$\xrightarrow{\text { Heslington }}$

More light on obscure units

Are you in a muddle over light units?
by J. C. A. Chaimowicz Dipl. Ing. E.S.E., M.I.E.E., M.I.E.R.E., M.O.S.A.

his covers the basic concepts deliberately cutting out the dull listing of units and tabulation of conversion factors, relating to four physic quantities: flux, intensity
 illuminance/irradiance. The treatment emphasizes this physical character o light units, to make them tangible to engineers.

If you are not in a muddle over light units, witch over to another article now. If you basic concepts with a physical meaning. But first, a glance at the jungle.
One of the units of photometry is called he nit. Page 578 of the Concise Advanced nit so:
no

Neither nice nor helpful. Another, more urement is the candle. Romantic perhaps, but not very practical. We also have noxes, tibs and apostilbs, sea-mile candles, footamberts, carcels, lumens, luxes, heffners and other tabots, without mentioning the
radiometric unit of watts per steradian per metre square per nanometre used by c.r.t specialists. How then do we get out of this jungle? Simple. By going straight to the basic concepts of light measurements.
These concepts are but four, relatin These concepts are but four, relating to
mur physical qualities: flux, illuminanceirradiance, intensity and luminance/radiance. Equipped with these you will be able to put into the right place every single one fhe two dozen or so existing units. Articamera sensitivity, with the light performance of 1.e.ds, c.r.ts, incandescent and ther light sources, with photodiodes, photorransistors and other light receivers will become clear, catalogues will becon nents from different sources possible.

uminous flux

The first and truly fundamental concept is that of luminous flux; the remaining thre associated with that of flow: think of the flow and you "feel" the flux. For example he flow of people in Oxford Street. How many per hour? Think of the water flow of mountain stream. How many gallons per flow. Try to remember now the shaft of light you once saw pouring through stained glass window. Finally, imagine a orch shining on a pitch-dark night - th is light flow - and you will have graspe
the notion of light flux.

Light is a form of energy. The lumino lux is the time-rate of the flow of this certain solid angle. For instance, in the case of the shaft of light, this will be the "energy time-rate of the light beam traglass window or the whole of it; in the case of the torch, the total flux is the "power" adiated into the light cone of the torch, ut of its apex.
Photometric units are designed to convey a sense of strength of human res-
ponses to light and NOT to give an objecive measure of the power carried by a beam of light. Whence "" in the previous paragraph. Being physiologically de colour-related. Radiometric units are not. They alone represent genuine power without inverted commas! They alone have licence to use the watt as a unit of
flux. The practical consequences of the lux. The practical consequences of the various colours is that even though two ragments of stained glass, one green, the ther red, may be transmitting equal mounts of true power (such as would be pressed in watts) their photometrically as sessed fluxes will be different, the human eye being more sensitive to green than to red light. The photometric unit of lumious flux is the lumen. For pure colorime tric green light 1 lumen corresponds to
1.47 milliwatts. For red light some ten imes more is required to produce the same physiological sensation and so, here, 1 lumen corresponds to 15 milliwatts. Green nd monochromatic radiation of 550 and 650 nm wavelength respectively. An inter nationally agreed lumen/watt relationship called the visibility curve for the whol ange of colours was established many years ago based on an "average eye", the a large sample of humans, Fig. 1. This curve gives an immediate answer to a com mon question of the type: "My gallium rsenide diode emits 0.7 mW . How many lumens is that? As GaAs I.e.ds emit at a This is how it should be, as the infra-red radiation produces no visual effects.

Illuminance - Irradiance

The magazine you are reading is illuminated. So is the theatre stage (though sometimes dimly), the shop window common is the fact that they all receive light shed onto them. To the contrary of, for example, a television screen which is self-luminous. This distinction must be mind for the remaining three of the basic
four to be understood. Illuminance is the area-density of light falling from an external source onto a surface. Hence it is represented by lumens per square metre. The unit used in photometry is lux, with one lux representing an metre: 1 lux $=1$ lumen $/ \mathrm{lm}^{2}$
When light from more than one source falls onto an area, the individual fluxes are dded.*
The radiometric conceptual (not numercal!) equivalent of the lux is the watt per square metre ($\mathrm{W} / \mathrm{m}^{2}$). Here, the area density of incident flux is called irradiance. You will have noticed the identity of the basic concept linking illuminance a irra hat the more the surface is tilted with regard to the incident rays, the larger the area lit by the same flux and the smaller the illuminance/irradiance. This is what is xpressed by saying the sun is hotter mid Before morning and evening.
basic four it is of utmost importance to emphasize that neither illuminance (lux) nor irradiance $\left(\mathbb{W} / \mathrm{m}^{2}\right)$ gives the slightes Consider the example of Fig 2. The illu minance of a black matt table top will be exactly the same whether or not it is cov red with a snow-white table cloth. This fits the definition of illuminance which, density of the on-coming and not outgoing radiation.
Just how strong a lux is and what practial magnitude a watt $/ \mathrm{m}^{2}$ is can be judged om these few examples

- moonlit landscape
moonlit landscape receives 0.011ux by 300lux St Tropez sunbather receives $1.5 \times$ 10^{5} lux
- 2 mW helium-neon laser (red) prosand lux, or an irradiance $\underset{200 \mathrm{~W} / \mathrm{m}^{2}}{\text { sand }}$.

intensity

Few real light sources radiate with the same vigour in all directions. Some, such the earlier-mentioned torch, are direc ional by design. Some, meant to be omnidirectional, fail in this respect through unvoidable manufacturing or exploitational light bulb, Fig. 3, in which the unavoidable contact-bearing base impedes the light preparation into a part of the surrounding space. Clearly, to characterize the strength directional than in a certain direction, hous intensity. The luminous intensity Laser light requires a specialized treat-

Fig. 1. "Mr gallium arsenide diode emits
o.7mW. How many lumens is that?" $A s$..7mW. How many lumens is that? As
GaAs l.e.ds emit at 900 nm the answer, from the internationally agreed curve, is
zero. Which is how it should be as the infra-
red radiation produces no visible effect.
represents the flux flowing out of a source
represents the flux flowing out of a source
in a given direction per unit angle. Because light source beam radiation three-dimensionally a flat angle unit such as the degree will not do here. A space ngle unit must be sed instead. Ahe ster dian. As the unit of flux is a lumen, the
luminous intensity will be measured in lumen/steradian. For brevity a single word has been internationally agreed, the candela, to stand for one lumen/steradian. The choice of a steradian for a unit of
spatial angle is unfortunate: a steradian is a very large chunk of space and as such it does not impart well the sense of direc tionality. Steradians are seldom used ther fields and it will certainly help to describe an easy wo form a steradian, take an organe or an apple and cut it into six as if sharing it equitably between six people. Then make a fourth, horizontal cut through the middle, Figs 4 \& 5. You have 12 equal portions. Each one of them contians (within a 4% error). A corner of a room contains approximately 1.5 steradians.
Within the context of light intensity measurments it might be even mo the hollow of a three-sided structure but as the interior of the tip of a cone. A hypothetical cornet with a rounded off "filler" surface having an area just equal to r^{2} would make tip.
In radiometry, the third basic concept corresponds to the power radiated into a intensity and is measured in watt/steradian. The intensity concept is valid only for
sources small with regard to the surrounding space, aptly called point sources. As long as the linear dimension of the radiating element is some ten times smaller than the distances of interest around them, one can call them point sources and use the intensity concept.
with bulbs, candles, l.e.ds or c.r...
spots but not with large panels.
Finally, the value of both luminous intensity and radiane is ens of the distance
direction is independant

$1)+$-areoc $1 \mathrm{~m}^{2}$

Huminance
10 lux

Fig. 3. As few real light sources radiate equally in all directions a directional quantity is
needed to characterize strength of radiation in a particular direction. Candelas are lumens

from the source at which it is m.

Luminance
 Luminance

The last of the basic four concepts of phoometry is that of luminance. Imagine you
are viewing a tiny, compact filament shining through its bulb of clear glass. The bulb, in fact the filament, it is bright that it hurts your eyes. Then imagine that the glass is opalescent. The device emits now
very nearly the same amount of light as before but the eye perceives it unhurt. The total flux is constant to a first approximation, but the opal glass envelope spreads
the radiation over a much larger surface
which re-diffuses it. Luminance expresses
the brightness of the source in a given direction.
The surface area of the source has a large part to play, now. Imagine that the milky part to play, now. Imagine that the milky
spherical bulb containing the filament broke and got replaced by another, twice its diameter, Fig. 7. The new bulb will appear four times less bright, despite the
constancy of its wattage and its total flux. To convey these effects of source brightness, the luminance expresses luminous intensity per unit surface area of the source. This is of course the same as the
luminous flux per steradian per unit area.

We thus have a unit of luminance Candela
metre
It is a unit that characterizes out-going radiation, to be used with objects which emit or re-emit light; a filament, a bulb, an
illuminated lamp shade, a working screen or an illuminated table top. An idea of its size: the UK standard for screen luminance in film viewing rooms is 37.5 cande las $/ \mathrm{m}^{2}$ at full illumination.
Luminance is a directional quantity, as The surface area, the second constituent must be taken as the projection of the physical radiation area on the plan perpendicular to the direction in case. With cer tain emitting or re-emitting devices the
intensity versus viewing angle variation is such that luminance remains constant. This is so because as the observer looks more obliquely at such a source, the projected unit area reduces in the same proportion as the intensity does. Such
sources, called lambertian, are exemplified by the moon, flashed opal glass, chalk good Bristol board. But this directional independence must not be taken for granted, as most devices and materials are not lambertian.
with direction.
Finally, the radiometric sister of luminance is radiance and I think that nobody will show puzzlement any longer at the fac that it is usually measured in
$\mathrm{W} / \mathrm{sr} \times \mathrm{m}^{2}$

Fig. 5. Spatial angles may be alternatively Visualized as that conical fraction of a
sphere whose surface area is equal to the sphere whose surface
square of its radius.
d sometimes (I am sure you will know where and why) in

$$
\mathrm{W} / \mathrm{sr} \times \mathrm{m}^{2} \times \mathrm{nm}
$$

And yet "watts per steradian per metr square per nanometre" must have sounded puzzling when first met in the openin Final word of guidance. When you com across an unknown exotic unit try to estab lish, first of all, to which of the basic four denominations it belongs and whether it is
photo or radiometric. The subsequent photo or radiometric. The subsequent
working out of numerical conversion factọrs should come easily.

$\frac{a}{r^{2}}=\frac{A}{R^{2}}$

Fig. 6. Values of both radiant and luminous IIt. 6 . Valy ass of both radiant and are independant of source

Fig. 7. Luminance expresses brightness of source. Large bulb appears four times
bright than smaller bulb for the same
pwer and flux Luminance power and flux. Luminance is luminous
itensity per unit surface area (which is th intensity per unit surface area (which is the
same as flux per steradian per unit area).
C.b. legal - but. . . The fact that citizens'. band radio is now legal gives little relief to those who are suffering from
interference because of the illegal use of a.m interference because of the illegal use of a.m.
sets on unauthorized channels sets on unaumorized channels. The Selective Pagnufacturers of radio paging equipment, have pointed out the interference to paging systems. They have conducted tests which have shown
that the use of illegal c.b sets can interfere severely with the paging systems which operate on the 27 MHz band.
The chief problem is that the effect of the
interference is very insidious when effect bleeper just refuses to bleep and, if detected, the fault is put down to the receiver and not to the
intererence. When one considers that paging interference. When one considers that paging
systems are used in hospitals, on industrial premises for maintenance and security per sonnel, then it becomes apparent that if an
urgent call is not received, then there could be urgent call is not received, then there could be
very serious consequences. A report by Tom very serious consequences. A report by Tom
Davies in The Observer says that a patient has died because a doctor could not be paged.
What the Selective Paging Co What the Selective Paging Committee pro-
poses is that radio paging should be shifted to a poseserent frequency band with a width o
dif 500 kHz , between 30 and 41 MHz . This band
was allocated at WARC to fixed and mobile was allocated at WARC to fixed and mobile
services. 31.735 to 31.775 MHz is already allocerved in the UK to on-site radio paging. The
maiority of the band, however, is allocated for maiority of the band, however, is allocated for
military use. military use.

British Telecom have said that they' are get ting more than 1,000 complaints each week about c.b. interference. These refer to interfer
ence on tv and radio, breakthrough interference on emergency services and oth mobile services, such as taxis. Model aircraft, i control is lost, can become lethal, unguide missiles.
We cor get their view. So fivil Aviation Authority to recorded incidents of c.b. interference, but they are worried by the possibility of harmonic radi tion. Apparently the 4th harmonic of 27 MHz
which could affect the i.l.s. localiser/v.o.r. band (landing and navigation systems) and the 5 th harmonic, which could affect the v.h.f. rft (air
traffic control) band. Spurious radiation can traffic control) band. Spurious radiation can, of
course, fall anywhere. The CAA pointed ou course, in forth Ameree. .he CAA pointed out
that in North America there is a recorded case of interference with the i.l.s.s.; interference with r is widespread. A arge number of the cases,
when investigated, proved to be due to the use of booster transmitter amplifiers; "burners" and are in use. and are in use.
Legal c.b. as specified by the Home Office does not present any problems, but the estimated one million ililegal broadcasters are unorder to changen it for the approved types. The
Selective Paging Selective Paging Committee believes that it is
only a matter of time before the illegal sets will
be accepted as an internationally recognised standard and that the current specifications
an interim measure, not the final decision.

News in Brief

Powertran specialize in selling kits from magazine desisns, including some from Wireless
World. Unfortunately, they have had difficulty in maintaining a construction and servicing facility. They were relieved when they heard of
Circolec, an electronic company in Tooting, Couthec, an enectronic company in Tooting,
Sondon, who were willing to undertake the work, and have now appointed them official Circolec can service the complete range of Powertran kits from the simple amplifiers to the most complex synthesizers. This is of special
interest to those who have built a kit but cannot get it to work, and to those whose finished kits may have failed some time after assembly. They can also assemble Powertran kits and ensure
that they are working properly before dispatch. that they are working properly before dispatch.
Many people wish to purchase these kits but are Many people wish to purchase these kits but are
not toally confident of their ability to assemble and set up such kits as the Transcendent
Polysynth. Kits purchased from Powertran may be forwarded to Circolec, or the complete order may bo sent to Circolec, 1 Franciscan Road,
London SW 17 8EA.

Multichannel digital tape recorder

Design of the digital additions to the audio cassette recorder
by A. J. Ewins, B.Tech. Research Laboratories, London Transport

Overall design aims of the digital recorder were set out in the first two parts of this article, which continues with a description of the additions to the audio cassette deck for
 All the logic used in the design of the All the logic used in the design of the digital circuitry is c.m.o.s. and is supplied cuits use the same +15 V supply and one of -15 V .
 Many of the logic circuit diagrams are complicated and, to keep them as simple a possible, not all the pin connexions to those necessary to define the function of the device are indicated - for example; the supply connexions are not normally shown. Again, a divide-by-10 counter (i.c. shown. Again, a divide-by- 10 counter (1.c. type 4017) may only be shown with its clock input, carry output and reset appreciate that other inputs may need to be connected to +V or ground, or lef unconnected as appropriate. Another example is the use of a D-type flip-flop (i.c. type 4013) as a divide-by-2 counter; it

is assumed that the reader knows that the Q output must be go to the D input forever whenever it is thought that a particular device may be unfamiliar to readers, a more detailed desciption of the pi

Temporary storage huffers,

control circuitry

Figure 2 in part 1 of the article showed the two 72 -bit temporary data storage buffers the 8 -bit sync. word buffer, a 2 -bit shif register, the Miller encoder and asso-
ciated control circuitry. Figure 12 shows ciated control circuitry. Figure 12 shows three and their interconnexion via logic switches. The two 72 -bit storage buffers are made up from two shift-register i.cs, types 4014 and 4031 , the 4014 type being an 8 -bit serial or parallel-in serial-out de-
vice. Since it is used only in its serial-in/se-rial-out mode, all eight parallel inputs g to ground, as does its parallel/serial mod input, PS. Serial data advances through the clock pulse. The 4031 device is a 64 bit, serial-in/serial-out shift register with
he facility to recirculate its internal data, epending on the state of a 'mode' input. out device the 'recirculate' input goes to +V and the 'mode' input to ground. As for he 4014 device, the serial data advances through the shift regis
edge of the clock pulse.
The sync. word buffer is an 8 -bit shift The sync. word buffer is an 8-bit shift
egister (another 4014) operated in the parallel-in/serial-out mode, into which the -bit sync. word, permanently present at he parallel inputs, is entered on the posinout is high. It is shifted serially out on the positive edge of the clock pulse when PS is low. To produce a sync. word sequence of $1,0,1,0,1,0,0,1$, the parallel inputs go to $+V$ or ground as shown. Filling and emptying of the two 72 -bit buffer is under the control of the circuitry detailed in Fig. 13(a), interconnexions be ween the two circuits being made as indicated. The logic sequence of the control time-expanded picture of the B and sync. word PS '\& 2', control pulses shown in

Fig. 15. Divide-by-9 circuit of Fig. 13.
tion and are drawn separately purely for detail. The divide-by-12 circuit, Fig.
14(a), is a little more complicated and 14(a), is a little more complicated and
needs some explanation. Firstly; it was not only required that the divide-by-12 circuit should produce an output pulse every twelve clock pulses, but that its duration
should be for exactly one DC cycle and should be for exactly one DC cycle and
occur at the eleventh DC pulse. The pulse occur ad the eleventh DC pulse. The pulse
so produced is referred to as PS and conso produced is referred to as PS and con-
trols the paralle/serial mode of the 12-bit shift register used in the analogue-digital conversion of the input stages (see Fig. 4 of
Part 1). Secondly, it was required to produce another similar pulse, referred to as B4, to control the sample/hold circuit of the input stages and to initiate the a.-d conversion. Divide-by- 10 counters, i.c. type 4017, produce ten sequential output
pulses every ten clock pulses that each last pulses every ten clock pulses that each last
for exactly one clock cycle. By combining for exactly one clock cycle. By combining
two of these counters under the control of a flip-flop, each is made to divide by 6 , producing an overall divide-by-12 counter with twelve sequential outputs that last for exactly one clock pulse. The addition of
three 2 -input, diode OR gates was found essential to determine the correct sequencing of the two-counters with relation to each other and the reset pulse.
The exact logic sequence of the two
counters is shown in detail in Upon examining the circuit of Fig. 14(a), it may seem a little odd that output 7 of both counters is used to clock the flip-flop and not, what might more reasonably be expected, output 6 . This is done because a
negative transition of the clock - enable input, CE, clocks a counter in the same way as a positive transition of the clock input. (A fact that has caught many a deFig. 17. Miller encoder circuit. Capacitor
and following inverter 4 increases transition times and help to eliminate spurious pulses c
delays (glitches).

Reset \perp

Fig. 14. Divide-by-2 block of Fig. 13 shown in greater detail. Sequence of operation and
production of pulses PS and B4 are shown at (b).

fig. 16. Clock oscillator and divide-by-8 circuit block of Fig. 1

66 as $\mathrm{B7}$ goes high, resetting the flip-flop, the CE input of A goes low, clocking it to produce a high on output A1. The first
clock pulse received by A thus advances it to produce a high on output A2 and not A1 as might have been expected.
Apart from the Miller encoder circuit, all the circuit blocks of the block diagram
of Fig. 2 (see Part 1) have now been desof Fig. 2 (see Part 1) have now been des-
cribed. All these circuit blocks, excluding the 8 -bit sync. word buffer and the Miller encoder, are constructed on one standard 43 -way circuit board of 0.1 in pitch, 114 $\mathrm{mm} \times 203 \mathrm{~mm}$.

Miller encoder
The last circuit block of Fig. 2 (see Part 1) is the Miller encoder, which is shown in detail in Fig. 17. Two inverters, 1 and 2, and three NAND gates, 1,2 and 3 , form a bi-phase encoder with the output from
NAND 3. This output is NANDed with an inverted blanking pulse (from the an inverted banking pulse (rom the inverted, bi-phase-encoded data stream at the output of NAND 4. The outputs from both NAND 3 and NAND 4 contain
glitches due to the combination of the two glitches due to the combination of the two
outputs from NANDs 1 and 2 and the inverted blanking pulse. To remove these glitches, a 2200 pF capacitor is connected from the output of NAND 4 to ground to
remove the glitches by increasing the rise remove the glitches by increasing the rise
time of the encoded waveform. A further inversion of the signal by inverter 4 re-

Fig. 18. Sequence of operation of Miller encoder shown in Fig. 17.
shapes the encoded data and increases the rise time to give a true bi-phase-encoded output, modified by the presence of the by-2 flip-flop to produce a Miller-encoded data stream at its output. Finally, the Miller encoded data output from the flip-flop is attenuated and slightly shaped by the two resistors and capacitor as shown. The
logic sequence of the pulses produced by logic sequence of the pulses produced by
the various stages of the Miller encoder whilst encoding an example of the serial
data stream (including the sync. word) is shown in Fig. 18. The glitches produced by the encoding process at the outputs of indicate where they occur in the encoding sequence. The influence of the blanking pulse, in suppressing the transition that would normally take place at the centre of the $1,0,0,1$ sequence of the sync. word, is also shown.

To be continued

Transmitter powered by nature
We have received rival reports of naturally
powered tv transmitters, both claiming to be the first. The first that we had notice of is the IBA equipment at Bossiney in Cornwall. It will pro-
vide programmes to just under 300 people and vide programmes to iust under 300 people and
marks a development in the design of low-cost relay stations capable of serving commuñities of
less than 500 people. The experimental use of less than 500 people. The experimental use of
combined wind and solar generators is designed combined wind and solar generators is designed
to last for several years during which data will
be ten be taken daily for computer analysis. Results
will be compared with the predicted performance obtained from a study of the Meteorological Office's daily sun and wind records over the past ten years. All power for the Bossiney sta-
tion will normally come from the wind or solar tion will normally come from the wind or solar
generators, or from a bank of 36 large lead-acid batteries that will be kept charged by power from the generators.
The other report
The other report was of the BBC transmitter
Dychliemore, Argyllshire which will help to bring pictures to 620 people in Dalmally and
Linchawe in the Strath of Orchy. It does not Lochawe in the Strath of Orchy. It does not
broadcast direct but receives the signals from Torosay on the Isle of Mull and retransmits them to the relay station at Dalmally. This also has both wind and sun generators with back-up
storage batteries and, as at Bossiney, there is monitoring apparatus to record the performance of each generating system. Analysis will help wind and/or solar powered stations. The BBC points out that as the consumption of the transmitter is very low, there is little saving in energy; but it has saved considerably by avoid-
ing the cost of bringing mains power to this ing the cost of brin.
remote Scotish site.

News in Brief
Colour codes for miniature fuses. There has een much mest sion in the past aboun markin bands have been used with no recognised coding, each manufacturer deciding arbitrarily how
o do it. The British Electrotechnical Approvals Board had recommended a three band system which met with some success. The International lectrotechnical Commission's members hav now come to an agreement hat a fer band
system should be used, with the recognised
cole system should be used, wiw the recognised
colours as used for resistors and capaciors,
where the first two bands reperest the first two where the first two banas reppesent the first two
digits of the current rating of the fuse, the third digits of the current rating of the fuse, the third
and indicates a decimal multiplier and the fourth, wider than the others, would be the
time-current characteristic, such as fast blow or me delay fuses. Details, are available in IEC time delay fuses.
Publication 127A.

Testing of components, especially environmental testing, can now be undertaken by Ashcroft ated an Approval Certificate as a B 000/CECC independent test house. A wide blies may be tested under controlled conditions. The test equipment includes that for the simulation and testing for shock, vibration, bump,
extremes of temperature, solderability and so extremes of temperature, solderabiilty and so
n. Ashcroft Electronics are at Somerford Road,
Cirencester, Glos. GL7 ITW. Cirencester, Glos. GL7 ITW.

1000 scosilioccopes

Telequipment 1000 Series The choice is yours

Tried, Tested and now even better Since their introduction a few years ago, Telequipment's D1000 series of high performance low-cos
oscilloscopes have established oscililoscopes have established
themselves at the forefront of the market. High performance because they are the result of intensive research and design efforts by one of the world's leading electronic
instrument manufacturers, and low instrument manufacturers, and low
cost because of volume production in a modern automatic production plant,
Performance to spare.
With the D1000 series, Telequipmen regard specifications as lower
limits, not maxima. For example, the D1016A bandwidth is specified as 20 MHz . The typical
figure is actually in the region of figure is actually in the region of bandwidth nearer 35 MHz . Input attenuator tolerances are now specified at $\pm 3 \%$ for all D1000 series oscilloscopes, a considerable improvement over the previous $\frac{ \pm 5 \% \text {. But again, the user may well }}{\text { find the true figure closer to } \pm 2 \% \text {. }}$ More Accurate Time Bases The time bases, too, have been upgraded. All new D1000 instruments have been equipped
with thermal compensation which

[^0]tightens time measurement accuracy to $\pm 3 \%$, with improved stability as a bonus. o match these improved time bandwidths and performance characteristics have been substantially enhanced. etter Display
he D1016A also has a new CRT he size is just the same easy-tointernal graticule and a quickheat cathode. It has a "GY" phosphor which is a near equivalent o the P31 but is more efficient actinically at low beam currents
and high writing speeds. A Choice of Bandwidth 10 MHz or 20 MHz with 5 mV division sensitivity at full. bandwidth and 1 mV division at
5 MHz in the D1016A, 4MHz in the D1011, and a choice of display modes; Algebraic Add, True X-Y, Channel 1 and 2 Chopped or Alternated, Channel
2 only, and Channel 2 Inverted. 2 only, and Channel 2 Inverted.
For further details send reply coupon today.
$\Gamma_{\text {Please send details of the }}-7$
| D1016A \square D1010/D1011 \square |
I Name
| Position
1 Company
I Address
 TELEQUIPMENT < 䕰 >

thandar's
 COMPLETE PORTABLE TEST BENCH

LCD HAND HELD

 MULTIMETERSTM $35431 / 2$ Digit

TM 352 3 $1 / 2$ Digit

LCD BENCH MULTIMETERS

TM351 31/2 Digit

LED MULTIMETERS

TG105 5MHz Pulse Generator

PULSE \& FUNCTION GENERATORS TG 100 100kHz Function Generators

FREQUENCY METERS
TFO40 8-Digit LCD

TP600 600MHz Prescaler

Thandar Electronics Ltd. resenve the right to alter prices and specifications on their equipment without prior notice. ALL THANDAR PRODUCTS CARRY A FULL 1 YEAR WARRAA

A field theory approach
by Lawrence A. Jones, M.Sc. (Eng.)

A study of a capacitor as a

transmission line by Catt, Davidson and Walton in the December 1978 issue contains, in the author's the subject being treated as a circuit theory. This article presents an analysis from a field theory viewpoin and shows the importance of the
concept of displacement current.

Displacement current is perhaps one of the most difficult field theory concepts and it
has been suggested ${ }^{1}$ that Maxwell dehas been suggested ${ }^{1}$ that Maxwell developed it by direct analogy with his equation

$$
\nabla \times \boldsymbol{E}=-\frac{\partial \boldsymbol{B}}{\partial t}
$$

It must be borne in mind, however, that this analogy fails when the forces on this analogy fails when the forces on
moving charges are considered. Displacement current is a necessary consequence of Coulomb's law when charges change with time, and the electric field becomes non conservative.
The fund

The fundamental point of Coulomb's law is that this force is transmitted through any medium, i.e., space is just as real a
medium as a metal. Consider Coulomb's law:

$$
\boldsymbol{F}=\frac{q_{1} q_{2}}{4 \pi \epsilon_{0} r^{2}} a_{i}
$$

In Fig. 1 we have two conducting spheres. Sphere A has a fixed charge while as both spheres are stationary there will be a constant force exerted by A on B and vice-versa. Let us now start moving sphere A towards sphere B. For simplicity we will consider changes of force in the y -direction

Fig. 1. Two conducting spheres. As long as both spheres are stationary there will bea constan
versa.
only, using the following formulae:

$$
\begin{gathered}
\frac{\partial E_{y}}{\partial t}=\frac{1}{4 \pi \epsilon_{0}} \frac{\partial i}{\partial t}\left(\frac{q_{2}}{y^{2}}\right) \\
=\frac{1}{4 \pi \epsilon_{0}}\left(\frac{\partial q_{2}}{\partial t} y^{-2}-q_{2} 2 y^{-3} \frac{\partial y}{\partial t}\right)
\end{gathered}
$$

therefore:

$$
\frac{\partial D_{y}}{\partial t}=\frac{1}{4 \pi}\left(\frac{\partial q_{2}}{\partial t} y^{-2}-q_{2} 2 y^{-3} \frac{\partial y}{\partial t}\right)
$$

Thus, if the electrostatic energy in the electric field changes, the energy chang so by producing an external flow of current in the conductor connected to sphere B. It is important to realize that this displacement current does not have the
significance of a current in the sense of significance of a current in the sense of
being the motion of charges. After all, free charge cannot exist in free space, and hence, there cannot be a force proportional
to

$$
\epsilon_{o} \frac{\partial \boldsymbol{E}}{\partial t} \times \boldsymbol{B}
$$

on the displacement current in empty space. In order to examine the effects o examples will be considered.
For the first example it is required that the charge on a conducting sphere be measured by discharging it on to a large scope. The resulting voltage pulse is measured and; since the input capacitance of the oscilloscope is known, the charge on the sphere can be calculated. When the calculated a serious discrepancy is found calculated, a serious discrepancy is found
to exist between the actual charge on the sphere, which may be found by direct measurement in a Faraday cage, and the charge measured on the oscilloscope; the explanation is interesting. given by

$$
W=\frac{1}{2} \iiint_{v o l} D . E \mathrm{~d} v
$$

As the sphere approaches the plate, the volume of the field is decreasing, so th energy stored in the field has been re-
duced; but where has the energy gone? As the sphere approaches the plate more nega-
ive charge is induced on to the plate an hus more positive charge will flow to
ground. At the instant of discharge a pulse round. At the instant of discharge a pulse
registered on the oscilloscope. This pulse is simply the charge that has not been neutralized by the induced charge on the large conducting plate, i.e., if there was originally +10 nC on the sphere and
only -8 nC induced on the plate then +2 nC would flow into the oscilloscope, hence the discrepancy.

Fig. 2. The set-up used for explaining the discrepancy between calculated a
measured electrostatic charges.

The method illustrated in Fig. 2 was used to confirm this theory. In this set-up scope's second channel is inserted through a hole in the conducting plate. A protective sleeve insulates this electrode from the plate. Once again the sphere is brought towards the plate but is now allowed to discharge onto the needle. In this case,
only $-\ln C$ has been induced on the needle so consequently, +9 nC will flow into the oscilloscope. The positive pulse measured on the oscilloscope will be almost equal to the charge on the sphere. Similarly, when
the discharge occurs, the -8 nC induced on the plate will be released since the electric field has collapsed. A pulse of -8 nC will be measured on the second channel of the oscilloscope.
The consideration of a cipacitor as transmission line has been discussed ${ }^{2}$ in the proposal that displacement current is erroneous. Consider the capacitor in Fig. 3(a): at time $t=0$ the switch is closed and the capacitor starts to charge. A capacitor cannot charge up instantaneously: it will
start to charge with the formation of field line ab, then cd, ef, etc. Hence, the initial
current flow, i_{1}, will be
$i_{1}=\epsilon_{o} \iint \frac{\partial E_{1}}{\partial t} \mathrm{~d} s$

This current flows until field line $a b$ is formed. At a time t seconds later, a current
i_{2} will flow shown by

$$
i_{2}=\epsilon_{o} \iint \frac{\partial E_{2}}{\partial t} \mathrm{~d} s
$$

Fig. 3. As a capacitor does not charge up
instantaneously, it can be considered to charge up peginning with the formation of
field ab, then cd, etc. field ab, then cd, etc.
Fig. 4. After switch S of 4(a) is closed, 4(b) 4(c) and $4(d)$ show the charge distribution for charged/uncharged capacitor pairs of
various values. Simplified circuits for various values. Simplified circuits for measuring cap
in $4(e)$ and $4(f)$.

establishing field line cd and so on. Figure From the above explanation it may be deduced that the transmission line capacitor is in effect an infinite number of small capacitors. I would suggest that this is the
reason why it has never been possible to measure inductance in a capacitor, because each capacitor will acquire an infinitely small charge. Obviously this very small amount of moving charge will have an
associated magnetic field, but this field will be so weak that it will be undetectable, hence the absence of inductance in a capacitor. It is important to realize that this situation can only arise in a capacitor, because in establishing an electrical field In a standard transmission line with a resistive load the situation is somewhat different. The conductors are spaced well apart from each other so the electric field win be negigible and ali the electrical
energy will be transferred into the load. In this case electrical energy is transported from one point to another, whereas in the case of the capacitor the energy is distributed over a large area. Inductance now
becomes important as a constant timechanging current will produce a changing magnetic field, i.e.

$$
\nabla \times \boldsymbol{E}=-\frac{\partial \boldsymbol{B}}{\partial t}
$$

or in circuit terms,

$$
v=\frac{L \mathrm{~d} i}{\mathrm{~d} t}+i r
$$

Finally, in considering the effects of displacement current, it is worth discussing the problem of a charged capacitor being connected to an uncharged capacitor (see Fig. 4) and the mystery of where the 'missing' charge goes ${ }^{3}$. The usual explanation is that the closure of the switch ini-

WIRELESS WORLDDECEMBER 1981

Fig. 5. As spheres A and B of 5(a) move together, ∂ E/at will change with time on the outer fringes until the total field is uniform
as $s h o w n ~ i n ~$
(b) as shown in $5(b)$, resulting in an increas
capacitance between spheres A and B.
oscillation of charge between the two capacitors which finally decays to a steady state. Consider these two equations for the charge and energy in a capacitor;

$$
Q=C V \text { and } E=\frac{1}{2} \frac{q^{2}}{C}
$$

It is accepted that the charge remains the same before and after the discharge, as can be proved by experiment, but
and

$$
E_{1}=\frac{1}{2} \frac{q^{2}}{C}
$$

$$
E_{2}=\frac{1}{2} \cdot \frac{1}{2} \frac{q^{2}}{C}
$$

which would imply an energy loss.
A more thorough study of the equation for the energy stored in a capacitor prototal energy stored in an electric field is

$$
\frac{1}{2} \iiint_{\text {vol }} \int_{D} \cdot E \mathrm{~d} v
$$

A parallel plate capacitor is an approximation of a true field, which is represented by two infinite spheres. There are two ways of increasing the capacitance value. One is to move the two spheres closer

Interfacing microprocessors

Further programming examples
by J. D. Ferguson, B.Sc., M.Sc., M.Inst.P., J. Stewart, and P. Williams, B.Sc., Ph.D., M.Inst.P
Microelectronics Educational Development Centre, Paisley College of Technology

6522 V.i.a.

The first routines concern the port and timer function of the v.i.a. Port B is monitored by the eight l.e.ds, and port A is controlled by the switches. This is no obligatory but is a convenient arrangement
for demonstration for demonstration.
Starting with the ports, the routines in
Table 1 show two programs which be gin by using the data-direction registers to define port A as an input and port B as an output. The first program runs in a continuous loop which repeatedly reads port A
(switches) and copies it to port B (l.e.ds). In the second example the program goes a stage further so the computer evaluates and displays the decimal and hexadecimal values of port A before outputting its bi

Table 4
nary value to port B. These programs though limited, include the essential elefunctions, is to establish the contr condition, take data from an input, process the data and send the results to an output. The next feature of the v.i.a. to conside is the pair of timers, Tl and T 2 . These can be used in a variety of modes and are able override other functions. Table 2 shows how timer T2 can count a defined number of pulses on pin 7 of port B , and how Tl can operate as a pulse generator to produce a square wave on pin 6 of port B. Used
independently, each timer offers time delays up to around 65 ms . However, Table 3 shows how they can be used together to produce longer time intervals. Timer T1 produces pulses on pB 7 and T 2 counts
pulses on pB6 via a short wire link. Time tervals of one minute can be achieved by aking 71 measure 50 ms intervals and T2 ount 600 pulses. Note that the timers ca microprocessor for other tasks while waiting for a time-out signal.
Other 6522 functions include a shift register and control lines, but this article can only introduce the main features. Th examples.

D-to-a converter

This device is simple to drive because, fo any binary data provided, a corresponding analogue output is obtained, in this case

Table 5

illustrates the generation of synthesized waveforms using Basic and assembly language where the highest frequency is produced by the low-level language.

A-to-d converter

The power of this section of the interface depends on the signal conditioning that
precedes it. For example, it can be used directly as a 16 -channel data-logger provided the input signals are in the range 0 to 2.5 V . However, many transducers provide smaller signals which may not have a common point to ground. For laboratory applications the signal conditioning can be simple, e.g. temperature and light intensemiconductor devices which deliver cur-
ents proportional to the measured parameter. Such an output only requires a shunt resistor to convert the signal into a voltage. A-to-d channel selection is achieved and the programs in Table 5 show routines that assume a cable 5 show roucompleted before the next one is called for. system where an analogue input is contin-

uously monitored and a message is displayed if the input voltage rises above is displayed if the input voltage rises above a
danger threshold. Two versions of a datalogging program are also shown which have been designed specifically for the AIM 65 . The first program is written $\mathrm{C} C \underset{\sim}{\circ}$ pletely in Basic while the second uses a machine-code subroutine for fast data col-
lection and Basic as a convenient method of displaying the results. Table 6 shows demonstration program which exercises all of the i.cs. The d-to-a converter is driven from a progressively increasing binary value and its analogue output is applied to one input of the a-to-d converter. The
signal is then reconverted to binary and the
result is used to switch on the l.e.ds con nected to port B .
mple programs illustrate several ways in which the interface board and a typical microprocessor can interact. Part four will discuss ways of extending the boards' functions, and modification for operation with other microprocesso
families.
References

1. R. Zaks, 6502 Applications Book, pub. Sybex.

 3. Ferguson, Johnson, Procter, "A Learning
Package based on 6500 series Microproces
sors" sots.", pub. Microprocessor Training Systems.
Kilsyth.

Table 6
Modification to the ADCO817 end-of
conversion circuit.

Hiligh-resolution weather satellite pictures

Data decoding and processing
by M. L. Christieson

Fig 10. Circuit diagram of the phase demodulator. Oscillator phase noise at the detector output degrades signal-to-noise ratio so de v.c.o. is used
Fig 11. Complete block diagram of the receiver

perature comp
This completes the receiver section of the system and to sum up, Fig. 11 shows an overall block diagram.

Decoding splli-phase data

In order to decode the data stream from In order to decode the data stream from
the detector into images, two processes are required;
-Converting the split-phase data into non return-to-zero (n.r.z.) data and clock. -Converting the serial n.r.z. stream into These processes are completely separate
and the first problem to deal with is the and the first problem to deal of coding is probably most easily understood by anaysing the coding process. In split-phase data a binary one is defined as having a negative-going transition in the midde of
the bit while a zero has a positive-going transition in the middle of the bit.
Figures 12(a) and (b) show a random serial-bit stream and its equivalent in s.p.1. is show in 12(c). An interesting case occurs when a continuous series of ones or zeros is
transmitted; the s.p.l. code for these is a single frequency of twice the bit rate. This type of coding is particularly useful be

WIRELESS WORLD DECEMBER 1981
lator. The v.c.o., a type of relaxation oscillator, is essentially a variable constant-cur-
rent source charging a small capacitor When the voltage reaches a preset value, a comparator causes the capacitor to be discharged. The output of this oscillator takes the form of narrow pulses ranging from 100 kHz to 25 MHz .
A four-bit counter, reset and enabled by successive cycles. The outputs are compared by a four-bit digital comparator. This forms the output-data stream. Auto-
matic clock phasing is achieved as desmatic clock phar signal resetting the two
cribed, an error dividers that produce the data rate clock. Two clock phases are provided for use in the sync. sequence detector described later. A.c. coupling is used to simplify the

Serial-to-parallel conversion
The output from the s.p.l. decoder is a serial stream of n.r.z. data with a twophase clock. The next step is to convert the signify the presence of a new word. A further useful signal generated at this point is a data-valid level, indicating that the available data is true h.r.p.t. It is easy to divide the serial-bit stream into ten-bit
words using a counter, but the problem is to divide the stream at the correct point so that the bits are correctly located in the word. The h.r.p.p.t. (high-resolution picture transmission). format contains a synch ronizing sequence, consisting of six words,
which divides the data up into blocks of 11090 words long. These blocks are called frames and Table 1 shows the structure of one data frame. Six are transmitted every second, each containing the information from one line scan of the radiometer and
different rate, but this may be ignored Information from the five spectral
bands is multiplexed sequentially so further processing is required later to isolate one spectral-band image. The spacecraft at present in orbit carry a four channel radiometer so the data in channel 5 is a repry all five channels.

Sync. detection and wo

framing

In order to locate the sync. sequence within the serial-bit stream, it is passed
through a shift register, clocked at the data rate. After each new bit is entered, the outputs are checked for the sequence. Ideally the register should be sixty bits
long and each bit should be correct before long and each bit should be correct before
the sync. flag is raised. However, this requirement can be reduced to say 24 -bits but with an increased chance of picking up a false sync. signal. Because there are also errors in the data, the chance of picking up
24 out of 24 correct is better than 60 out of 24 out of 24 correct is better than 60 out of
60 . Although other solutions are possible, 24-bit shift registers are easily constructed and the detection circuit is simplified. Suppose the detector is set to find the last 24 -bits of the sequence. When the flag
is raised it means that the contents of word is raised it means that the contents of word
six are located in the ten bits of the register nearest the input. This frame-sync. flag can be used to reset a decade divider which, when in its zero state, indicates the presence of a new 10 -bit word. When the ter will again have reached zero, thus dividing up the bit stream. The counter should stay synchronized but if through clock loss it does not, it will be corrected
by the next sync. flag 11090 words later the fraync. lag 1090 words later. The data-handling computer to indicate the
start of a new image line. If the data is very noisy, some sync. sequences will be missed
and so the presence of valid data is signified by regular sync. If the computer also uses this flag to avoid a software word search, its presence must be guaranteed, so a second signal is generated called g sync.
synchronized to the frame sync. (f sync.) by a similar reset counter method.
Fig. 15 shows a practical serial-to parallel converter. Some of the circuit uses t.t.1. and some c.m.o.os. This change midway through the circuit interface could be used but t.t.l. may be used throughout if convenient. The 10 -bit words at the shif register output are only valid during the word-clock pulse, if there is a possibility of delay before collectio
This completes the data decoding part of the system. The outputs comprise.

- 10 parallel-data lines
-1 word clock at word rate (66.54 kHz) - 1 data-valid signal

Digital data must be processed and turned into images and the method used will depend to a great extent on sources avalable to the constructor.

References
11. VHF Ha
11. VHF Handbook, ARRL
12. VHF-UHF Handbook, RSGB
13. Analogue and digital Communications, W.D. Gregg, Wiley and Sons.

The address from which references 1 and 2 of last month's article were obtained will a
be given in the next article together with a further reference from the same source
 Calculativon, L. V. . Ilake No N S S Naval Research
Calculation, L. V. Blake, US Naval Research
Laboratory, Sept. 1961 .

Displacement current

continued from page 70
together, causing the charge to move (via the displacement current) as shown in Fig. 5. This method uses much electrostatic energy as the masses of the electrodes ar very large compared with the mass of the $1.13 \times 10^{-13} \mathrm{~kg}$.
The second method for increasing capacitance is to transport the charges by a conduction current. This method is much more 'energy efficient' as the only losses
are those associated with the collision of the charges with ions. Resulting ohmic losses are negligible in short capacito leads.
The a

The author disagrees with the previously, despite the fact that the differential equation for a discharge can be very complex ${ }^{4}$, and asks why the same charge is
measured before and after the switch is closed? If the circuit did oscillate, the os-
cillation would obviously decay and the charge would be neutralized by recombination with an equal and opposite charge,
with the liberation of heat. Secondly, since the capacitors are in parallel, the charg density will be the same. Consequently system will be static.
system will be static.
Finally, it is worth
nitude of current that would have to b present if energy was to be temporarily stored in the inductor. For example, consider a capacitor of $5000 \mu \mathrm{~F}$ connected to
another of a similar value. Let the voltage be 10 V . The energy stored in the capacitor, E, can be found by

$$
E=\frac{1}{2} C V^{2}=0.25 \text { joules }
$$

If half this energy were to be stored in an inductor with very short leads of $1 \mu \mathrm{H}$ then

$$
0.125 \mathrm{~J}=\frac{1}{2} \times 10^{-6} \times I^{2}
$$

so I is 500 A .

Conclusion

The energy equation for a capacitor as sumes that any change is brought about by letting the field do the work. Charge can not be created or destroyed, although equal amounts of positive and negative tained by separation and lost by recombination.

References

1. Engineering Electromagnetics, W. H. Hayt, McGraw-Hill 1974, page 340 2. 'The history of displacement current', I. Catt, March 1979. Did you know?', Epsilon, Wireless World, De-
Her 1978 . 4. High Voltage Engineering, E. Kuffel, M. Abdul-
lah, Peragamon Press Ltd, 1st edition (1900),
pages 109-148.

Jaguar tamed

Said to be the first aircraft in the world to fly solely 1nder the direction of all-digital, pecat Jaguar made its first flight in this form at British Aerospace's Warton aerodrome on October 20, 1981.
drome on October $\begin{aligned} & \text { One of the goals on an aircraft designer } \\ & \text { has always been stability, so that dis- }\end{aligned}$.

Fly-by-wire Jaguar taking off on its first
flight from Warton
urbances from the desired flying attitude are damped and corrected by the aerodyamics of an aeroplane, without excessive movement of the control surfaces. The
kept within reason, but the more stable an aeroplane, the less manoeuvrable it becomes -
attitude. Clearly, an unstable design would be more inclined to depart from the straight and narrow flight path on demand, but would also present the pilot with an impos-
sible task simply to keep it in the air. Stability and agility are uneasy partners. Military aviation, as is so often the case, is the stimulus for a technique which has been developed over the last ten years and
which reaches a new level in the BAe which reaches a new level in the BAe
equipment for the Sepecat Jaguar. The jargon term in common use is "Fly-bywire", which means that the control surfaces are moved not by control rods and
linkages but by actuators driven by the linkages but by actuators driven by the
pilot's controls and by computers, which pilot's controls and by computers, which
are capable of rapid response to disturbances to keep the aeroplane stable, and to the pilot's demands. Four computers
to and optical data links operate with considerable redundancy to maintain operation
even when two of the computers or the even when two of the computers or the
gyro sensors that provide their inputs fail: the computers are programmed to prevent the aeroplane being forced into evolutions
which would take it outside its desiged which would take it outside its designed capabilities. BAe have not thought it
necessary to provide for manual control in emergency.
Jaguar will shortly be tested with wingJaguar will shortly be tested with wing-
root forward extensions, which will move root forward extensions, which will move the centre of pressure forward of the centre
of gravity and de-stabilize the aeroplane.

More letters

Microchips and megadeaths

Surely Tim Bierman (October Letters) is
expecting too much from human beings. expecting too much from human beings.
Nothing that is mass-produced by unskilled Nothing that is mass-produced by unskilled
labour, as humanity is, can be expected to have outstanding quality.
Moreover, the design of human brains is so program them properly, and in so long a proces progran them properily, and in so long a process
it is inevitable that mistakes of a number of kinds are made. On top of his, evolutionary work best in conditions of subsistence farming: it is to be expected that they will flounder and make mistakes in a highly technical society.
Today's ultimate problem, in fact, is that this technical society has been created by the unusual members of the human race, while the ordinary everyday members of that race are
unable to understand how to control it. unable to understand
P. . Smetturst
Bishop's Stortford
Pe.c.
Bishop'
Herts
Mr Scroggie, in your September letters column,
seens to assume that because unilateral nuclear disarmament will tito trecessarily stave off the
ultimate bonfire it must therefore be a bad thimate bontire it must therefore be a thing. I have torn upa two-pager reply,
prefering to address a single point. My respect preterring to address a single point. My res
for his intellect and his practicality left me surprised at his apparent paranoia.

The question is, even supposing his predictions to be true, would he really prefer to
die in a nuclear conflagration orse, survive cone) thagration (or, possibly overnment?
It appears that the prospect of Soviet world domination fills us both with dismay, but I must remind him that it is the USA which currently
threatens to escalate the arms race beyond is threatens to escalate the arm.
present arready insane level.

present aiready in Stephen Holden Thornbury

Thornbury
I have been reading with great interest the have been reading with great interest the
etters you have been publishing under the heading "Microchips and megadeaths". While here are parts of letters with which I agree, I missed the point.
I refer primarily to the writer who suggests hat students following a asndwich type degree aining their industrial experience in the defence industry. I am such a student, working for a major defence company, and would like to point out that the many students in my position
do what they do because they want to become electronics engineers, not because they want to
kill each other. What is usually forgoten when kill each other. What is usually forgotten when
alking about the defence industry is the fact alk ing about the defence industry is the fact
that weapoiss are not the sole output. Certainly hey are important, but an equadly important y-product is technological advancement: This capable of better things ds we develop new
skills. It is something wee canniot do without

The massive pocket calculator revolution did not start because someone decided it would be nice for scchool children to have them, but
because the techology had been developed because the technology had been developed. I am assuming the writer proposes that
anyone involved in building weapons should nyone involved in building weapons should
ive up his work and concentrate on a more socially useful activity. Doest this on include all
the people who work in the canteens and on the sites, or even those who print the stationery?
The list is endless, and yet they are all involved in warfare.
Tim Bierm
Tim Bierman pointed out in his letter in the Ctrober issue that the Americans are spending
large sums of money on "weapons of death". large sums of money on "weapons of death".
We need a deterrent. Does Mr Bierman really
believe that if the United States decided not eelieve that if the United States decided not to
spend that money their enemies would spend that money their
disappear?
think not.
Instead, let us stand. up for what we believe ins and not be intimidated by those who look 0 us as their enemy. If the worst weere to happen, nust prepare now for what we will need.
.C. Allen T.C. Alle
Ash Vale
Hants

Correction

Figure 4 of "C.b. frequenty synthesis", No-
ember 1981 , contained one ertror. The earthed de of L_{1} is shown conntected to the antode of a Jaticap diode. This connextion should be re-
laced by a 1 nF capacitor so that the anode is no placed by a $\ln \mathrm{F}$ capaciitor sod that the anode is no
onger directly connected to earth. Apologies for
his omission.

Educating engineers
An ecological viewpoint
by Peter Hartley, Ph.D Colorado School of Mines, USA

This article argues that engineering should be changed. Because it is rooted in the tradition of humanism and "the conquest of nature" it is having disastrous results in the world around us. Its aim of technical competence is not enough. The cure, education to use systems analysis a method it already possesses - to examine critically the humanist assumptions that have dominated engineering so far.

The development of modern technology has been a great adventure that many people have justly regarded as the engineers have prided themselves on making this conquest possible. Many, perhap most, still do. What other attitude is possible for them? Can engineering be anyhing else but the conquest of nature? find the conquest of nature questionable at best. Yet I must immediately make clear that I am not speaking from across a supposed gap between the so-called "two cultures, F an not apposid or them.
If I were a humanist, my problem would be immensely complicated and probably hopeless. Fortunately, I am not humanist. I am a cultural ecologist with a to one side the "two cultures" approach which completely blocks any resolution of he question. I can point out with no discomfort that the past attitude of engibulary or preoccupations of those who consider themselves humanists, but to the dominant conception in our society about he supreme importance of strictly human interests in the general scheme of life, Hsence of that ignorantly anthropocentric essentook.
The pressure of history allows us no choice but to use the term "humanism" for hat ever increasing tendency to conide dency which inevitably becomes indistinguishable from the assumption that life has no value apart from human purpose.
This humanist view displays and indeed This humanist view displays and indeed constitutes humanis
ecological character.
"Progress" promises a general amelioration of human life, making possible for everyone good education, cultivated sensi-
bility, and not onily the provision of bodily
necessities but the addition of eve as it has been attainable, has of course been humanist education singing the praises of human achievement through the power of human intellect, and defining the world as something for that intellect to exercise itself upon. Even material comfort itself is
subsumed under the purposes which humanism in its more self-conscious moods likes to dwell upon; I have heard people maintain that material progress is necessary to provide us with energy slaves
so that we can all be free to spend more time exercising our more purely human (i.e. mental) faculties.

Humanism is the dominant ideology of modern times, comprehending both capialism and socialism, and being not merely of every society that is modern or trying to become so. Its main practical effect is to increase without limit the per capita amounts of resource use, pollution, and basically its commitment to human selfimportance - a generalized egoism that encourages socially and environmentally corrosive egoism in every human indiidual. In practice, this means that engioutlook that at its foundation is humanistic. Modern engineering, in fact, has had no other purpose. ${ }^{3}$

The world as a manipulable object

Engineers follow notions of improvement set forth originally by poets and felicity for man. In its engineering manifestation, then, humanism contrives to manipulate the environment in ways that its philosophical and literary manifestations deem beneficial - to make improvements that accord with human purposes. In those
terms we can even regard modern science as a creation of humanism. Operationally, modern science has been humanism's technique for defining the world as a manipulaeffective procedures of manipulation Engineers have simply applied those procedures in carrying out projects determined by humanistic notions of improvement. The question of professional respons

This article is a shortened version of one that originally appeared in the December hat originally appeared in the December 1980 issue of The Ecologist and is reprinted by kind permission of the editor of that

ility boils down to whether we can define ull professional adequacy in engineering out such projects. This amounts to asking whether we should try to establish a radical eparation between engineering and humanism to replace the fantasy separamaintained. I started out by asking whether we had to identify engineering with the conquest of nature. In fact, humanism is the conquest of nature. This is humanism's fundamental arrogance and themselves as being committed to responsibility. Can engineering turn away from he conquest of nature? Can engineering behave with full responsibility? Can there The most immediate diffic
roject to conquer nature is its effect on human nature - its deleterious effect on society, and the concomitant diminution of human personality which results from the loss of sustaining interpersonal fabric.
Humanistic egoism makes people unable to know society as anything but an aggregate of separate egos, or the earth as anyhing but an aggregate of mere non-human bits and pieces. But notwithstanding the vaunted importance of those isolated egos,
they become objects of manipulation just as surely as the bits and pieces of estranged nature do - and by means of the same process. The industrial system is impossible unless most people in the industrial Abolition of Man, C. S. Lewis says: "Man's power over Nature turns out to be a power exerted by some men over other men with Nature as its instrument." ${ }^{44}$ That, and not he environmental problem as usually con dilemma of the engineer.
The exaggeration of separate human importance has created a general social esrangement such that the individual can one no real significance. There are no longer any transcendent interpersonal
bonds that can confer fully differentiated individual significance. ${ }^{5}$ Engineering has ontributed to this situation not only because it has created the technological basis
for industrial production as such, but also for industrial production as such, but also
because industrial technology has been the means whereby the isolation of individuals in socially irrelevant modules has become possible. Survival - even comfort - has become possible without reference to thers.
People's material needs are provided for ot through binding human contact, but
hrough mere distributiori of standardized goods and services, which can be routed in any combination and at any speed to any
main relationship then is to the general proople as such. The mechanism require that human behaviour must be compatible with the requirements of mass production insofar as possible, individuals must be replaceable and interchangeable parts Their relationship with each other berelationship to the mass system. Differen tated, unique personalities become a impossible as the differentiated socia networks that once sustained them Quite simply, the energy that once oes; energy now flows in wires and pipes The effort to satisfy basic material needs that once gave urgency in social ing material content no longer exists. It has been engineered out of existence in an been engineered out of existence in an
attempt to fulfil the humanist fantasy of beration from mundane concerns deemed unworthy of the human intellect, or to effortless accommodation.

Engineering must b social science

The point is that engineers do no merely design hardware; they design the hey design social relations as well. It they design social relations as well. Its
effect on social ecology is the greatest ecological impact of engineering. If engineers are to be fully professional, they must take full professional responsibility for their ac tions. Engineering must recognise and
address its social science dimension; the address its social science dimension; the
engineer must be a social scientist as wel as a designer of equipment and material processes.
The alternative view, still probably typical of most engineers, is that an engi-
neer should merely react to situations or requirements that he must accept as given he should not presume to make judgments except in terms of his technical expertise, which should be as narrowly specialized as
possible so that he can be maximally expert at what he does. Social responsibility tend to be regarded in terms of adherence to government regulations. In practice, an engineer who is educated to react will tend
to criticize those regulations only on the to criticize those regulations only on the
basis of whether they make his job more difficult. He will feel little professional obligation to evaluate and criticise polic on broader grounds, and certainly he will not feel obligated to take a public stand $a s$ a professional on questions of resource use
and general ecological impact (including social impact) that go beyond the purview of the regulations.
To be sure, technical competence is a
sine qua non of adequacy in any profession. sine qua non of adequacy in any profession.
But if technical competence is all we mean when we say an engineer is professional, then we cannot regard engineering as a profession on the same footing as other
learned professions, which are ultimately
based on standards of ethics and responsi bility that go far beyond merely technic
criteria. We are left with a conception the engineer as no more than a high-grade technician, a functionary not fully profes sional - that is with no responsibility fo
his actions beyond their technical adehis actions beyond their technical ade quacy. A glorified mechanic. But someone
who is professional in the fullest sense is responsible for taking into account the ultimate meaning of his professional actions, and is expected to have the background fo doing so. We must assume that a real proown professional acts - -then he can't pass the buck, can't define himself as someone who merely reacts to given situations.
In the past we have taken the unwar ranted liberty of making radical changes in an environmental system that we did not understand; yet we have long known tha likely to do harm. We are not dealing in vague sentiment here - from a strictly engineering point of view, it should appear most reasonable to hold suspect any proposed radical depare
which prevailed at the time when the human species developed its present phylogenetic constitution.
logenetic constutution.
Such practical questions of systemic integrity can show us how establish a rea separation between engineering and
humanism. Unlike humanism, engineering can assimilate ecological thinking. To the extent that it does, we will have the non-humanist, responsible engineering we so badly need. At present, many engineers
advocate a "broader" curriculum for engineering students. Naively, they suppos this would require a better grounding in the humanist tradition, which panders to their desire for cultural approval. Those o us in engineering education who have been
immunized against the self-adulating rhetoric of humanism must disabuse our engineering colleagues before they overload the curriculum with humanist propaganda Grounding in traditional humanism wil merely deceive the students into feelin
well-educated, while making them bette able to rationalise their acts and fend of real systemic analysis.
To develop an adequate philosophy, engineering does not have to borrow from design should provide an adequate basis, as long as engineering develops a broade perspective regarding the systems it deals with. Engineers must begin to apply good engineering analysis to issues that in the past hey have pretended to ignore. Engi-
neers have produced many unanticipated and undesirable effects not because they have failed to be humanists but because
they have failed to be thoroughgoing as they have failed to be thoroughgoing as engineers. Adequate grounding in systems
science will make obvious the fact that even a concern for medical effects as such is not good enough for good engineering the social organization which brought about those effects is also part of the prob lem. This is why I emphasise the social gineering must pay attention.
In the long run, there is little point in
erely designing ways to mitigate the bad effects of productive operations when such effects are the inevitable result of the prin-
ciples constituting the organizations involved - principles that engineers have fostered without understanding the implications of what they were doing.
The activities of giant corporations dohe principles on which they operate, we the principles on which they operate, we
hall be helpless before them. Engineers are the ones who have done most to help the development of industrial giantism, with its attendant transformations of community life, family life, and behavioural destruction of competitive free enterprise
derer Ironically enough, most engineers tend to view themselves as social conservatives et their activities have made and continue to make inevitable the most radical kind of
social change, all because they refused to examine the implications of what they were doing.
Even if engineers as a group would prefer to avoid the responsibility of full prosuch a luxury any longer. What enginee do is too important; the effects of their activities are too profound. The advice of physician affects one life at a time; the advice of an engineer may determine
whether hundreds of people develop cancer ten or twenty years later. We can no onger afford the kind of ignorant specialiation that hampered understanding in the past. We must insist on the most rigorous,
fully developed, and comprehensive kind of professional standards in engineering of professional standards in engineering,
and we must give engineers an education hat makes them capable of living up to standards of that kind.

Fundamental changes to curriculum needed

This involves some fundamental rethinking about the very nature of an engi must be integral with technical Instruc must be integral with technical instruc-
tion; it cannot be a mere addition to the technical curriculum. Courses aimed at giving "breadth" tend to be superficial, and to be regarded as extraneous by the students. If we cannot make the change an shall continue to graduate engineers who have only the technical skill to perform as narrowly based, irresponsible functionaries having no conception of the larger
and more important effects of their activiof their activities. $\begin{aligned} & \text { Systems analysis is a basis of ecological } \\ & \text { sudy which the ecologist tries to make as }\end{aligned}$ study, which the ecologist tries to make as
rigorous, as exact, as quantitative as it can rigorous, as exact, as quantitative as it can
be. Energetics is an essential topic for be. Energetics is an essential topic for
systems analysis in ecology, and along with the study of material and information flow it should be a basic topic for an approach to non-humanist engineering. Properly understood, this approach provides a tool for social analysis organized in a way clearly
relevant to the technical considerations of relevant to the technical considerations of
engineering, couched in a language easily assimilable to the language tanguage easily
already know. An engineer should know control system. All engineering is essen control system. Al engineering is essen-
tially systems engineering of one kind or another; our aim must be to give every engineer a more generalised understanding of systems thinking and an ability to apply
that thinking to wider that thinking to a wider range of systems,
making it possible for each engineer to melate his speciality to its broader systems
real context in a professionally meaningful way.
Pres
Present engineering education is in
effect a method for effect a method for training people to
ignore insofar as possible everything that ignore insofar as possible everything that
does not bear directly on the immediat technical problem. The main result of this is a tendency to suboptimize partial systems models in terms of very unrealisti-
cally defined criteria of "demand" and "need." These simplistic criteria enable need." These simplistic criteria enable analysis of systemic context and systemic alternatives. To proceed in such wilful ig-
norance is unprofessional.

Professional view is process-oriented

The systemic view, which we could also call the operational or realistic view, would enable the engineer to take a much more
solid pride in his work. We could even call this view the conservative view, for a conservative in the best sense is someone
who is process-oriented - that is, "conwho is process-oriented - that is, "con-
cerned for the on-going inter-relationships and effects of elements within the system on each other." It is also the only conceivable professional view. At present, a technically competent engineer is in the posi-
tion of designing good components for use tion of designing good components for use
in a badly designed overall system - a system that we could rapidly re-design for better energy efficiency, without any essentially new technology, and without radical social change.
Recent engineering has made everyone
more and more dependent on distant more and more dependent on distant
sources over which they can have no direct influence. Engineering has designed a situation in which increasing control by cen-
tralized bureaucracies has become inevit tralized bureaucracies has become inevit-
able. The monstrous bureaucracy that fills able. The monstrous bureaucracy that fills
conservatives with such disgust is a monument to the degree of impact engineers have had; their headlong rush to introduce technical innovation has completely revo-
lutionised our political life, making local lutionised our political life, making local
self-regulation and independence nearly
impossible.
One of the worst problems is the general
and manipulation of society by the industrialcommercial bureaucracies, all pretending
to offer choice while closing off options. to offer choice while closing off options.
Corporate economics really amounts to a collusion of private interests in a non-ac countable private government controlling nearly every detail of our lives. The limited liability corporation defined as a juridical as such it is a suitable topic for engineering as such it is a suitable topic for engineering
analysis. From a systems point of view, the bad thing about such government is that it
is unnatural - that is, it is badly designed
and has to be maintained by an excessive energy flow. It is an attempt to deny systemic reality. It is inherently irresponsible, since it is set up precisely to allow those in control to affect others without paying attention to the full responses of
those whom they affect. Thus to inhibit diversity of response from within a system is automatically to increase the energy cost of maintaining the system. ${ }^{9}$ Any engineer should be at least minimally conversant with what systems analysis might have to
say about such a problem, and should be ready to contribute to the analysis from his own point of view.
A still more profound effect of relentless technological change has been the fundamental re-design of basic personality -
i.e. standard behaviour patterns - due to a complete change in the material basis for interpersonal relations and for the expectations that people have. We have engineered individual self-reliance out of existence. People who are cogs in a giant
centralized corporate machine are not going to be self-reliant, though they may cling to the fantasy and soothe themselves with rhetoric. But they feel their helplessness, so they become addicts to the drug of consumerism, the endless purchase of
endless trivial products. The systemic endless trivial products. The systemic
effects of technological innovation have created a population with an ever-increasing proportion of individuals who demand instant gratification, who have been programmed to "need" constant novelty. typical personality, incapable of restriction, incapable of permanent relationships, intolerant of life's ordinary demands. They are no longer differentiated individuals changeable components in iobs where replacements are always available, and one is as good as the next. The same inevitably becomes true of personal relationships. One worker is as good as another, one job
is as good as another, one spouse is as good is as good as another, one spouse is as good
as another. This is freedom as designed by our present technology, the creation of engineers who just wanted to do their specialized thing, and let somebody else
worry about the consequences. worry about the consequences.
In fact, we do not even need subtle analysis to prove that our system tends to
maximize energy and materials consumption, nor do we need to argue about whether such a tendency is indefinitely sustainable. Whe need only ask how to decide on what energy and resource and organizational criteria we must use to
indicate a consumption level that is sustainable, and how to apply those criteria. How should we go about designing a
system that will stay at a sustainable level? system that will stay at a sustainable level?
This is clearly the engineering and social This is clearly the engineering and social
question for our times, and I should not have to ask it - any professionally responsible engineer should have thought of ponsible engineer should have thought of
it ten years ago. Unfortunately, engi-
neering has failed to develop real profesneering has failed to develop real profes-
sional responsibility because, as I sugsional responsibility because, as I sug-
gested at the outset, engineering has been gested at the outset, engineering has been
dominated by humanist values, which are
inherently antisystemic and thetere dominated by humanist values, which are
inherently antisystemic and, therefore, in -
herently irresponsible. The humanist dream of "progress" to which engineers
have devoted themselves is a manifestation of humanism's fantasy concerning what it regards as human freedom, dignity, and power. Manipulation of the world both exhibits these things and proves that such
manipulation is iustified - if you are free you have a right to act freely. There is you have a right to act freely. There is a
built-in tendency, therefore, to identify "progress" with anything that increases the amount of energy and material that people control.
When the inev
When the inevitable ill results of such behaviour become too obvious to ignore
those non-engineers consciously devoted to humanism pat themselves on the back for being sensitive enough to notice the problem, while they chide engineers fo creating it. The engineers then are
supposed to take care of it. Non-engineering humanists are proud of themselves for having well-articulated noble sentiments, and they feel that they have ful filled their obligation when they voice sume, however, that the solution to a problem will always allow them to retain unlimited control over energy and materials, and they humanely insist that all people
should have such benefits. Thus the key to should have such benefits. Thus the key to belief that we can have our cake and eat it, too - that we can somehow ignore the second law of thermodynamics. That is the belief embodied in our society's basic de-
sign assumption that energy and materials use should increase every year - that we should attempt to maintain - unlimited growth. The fact that engineers have accepted such a design assumption argues that engineers have been trained to b
humanists first and engineers second. Engineers by themselves secnot our problem, but if engineers will not take full professional responsibility for what they do, we will all continue to be helpless. Engineering education may be the key to the modern dilemma.

References and further reading

 1. J. B. Bury, The Idea of Progress: AnInquiry Into Its Growth and Origin, New 2. David Ehrenfield, The Arrogance of Humanism,
Press 1978.

Press 1978 . 3. Joseph

3. Joseph Meeker, The Comedy of Survi-
val; Studies in Lite Sal; Studies in L
4. C. S. Lewis. The York MacMillan 1965. See also Meeker, The
Spheres of Life Ecology, New YYork Introduction to World 5. Edward Goldsmith, The Stable Society, Wadebridge Ecological Press, 1978 .
5. Rene Dubos, Mirage of Health, New York, Doubleday 1959. 7. J. C. Mathes and Donald H. Gray, "The
Enginer as a Social Radical" The Ecolog-
ist May Engineer as a
ist, May 1975 .
6. Paul Sears, 8. Paul Sears, The Inexorable Problem o
Space, The Subversive Science: Essays To wards an Ecology of Man, ed. Paul Shepara and Daniel McKinley, Boston, Houghto Miffllin 1969. 9. Ramon Margalef, Perspectives in Ecolog
ical Theory, University of Chicago Press,
7.

86 WIRELESS WORLD DECEMBER 1981

New Products

Communications

 test setThe latest addition to GADC's communications test equipment is ynthesized generator for level, quency measurements to the releer alphanumeric display shows control settings and measurements and gives indications from the instrument's self-test circuit. Plug-in
cards are available for the following cards are available for the following
measurements, 3 -level impulse noise, group delay, phase/ampli-
ude jifter, sudden alterations in hade jitter, sudden alterations in eakkaverage ratio, 4 -wire return loss and volts, ohms and capaci-
ance. G.A.D.C. Ltd, 70182 Akeance. G.A.D.C. Ltd, 70182 Ake
man St, Tring, Herts HP236AJ. WW301

Hygrometer

his instrument gives a readout of bsolute humidity or water vapour
content in air and other gases independent of temperature or ressure. A detector head, compris
ing a neon lamp, optical filter and

WW303

Temperatur

 controller Digital-readout temperature controllers from Controls and Automation Ltd are available in 12standard ranges to cover from 0° standard ranges to cover from 0° to
$1600^{\circ} \mathrm{C}$. The CAL 700 has a $1 / 8$
DIN size front bezel (48 by 96 mm) and is said to be capable

sor; cold junction compensation is
incorporated. Input drift is $3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ sor; cold junction co driff is $3 \mathrm{~V} \mathrm{~V}^{\circ} \mathrm{C}$
incorporated. Innut
and readout accuracy is $\pm 0.15 \%$ and readout accuracy is $.0 .15 \%$
f.s. The unit can operate in proportional or derivative mode wic
manual reset or in four termina mode. On the standard version
relay rated at $10 \mathrm{~A}, 250 \mathrm{~V}(50 \mathrm{~Hz}$) is relay rated ar switching but option
used for load switc are available with opto-isolated and
triacthyyristor switching outputs. triac/thyristor switching outputs.
Both actual and set temperatures can be read from the display. Con-
trols and Automation Ltd, Regal trols and Automation Ltd, Rega
House, 55 Bancroft, Hitchin Herl House, 55 Bancroft, Hitchin, Her House,
SGSLLL.
WW304.

20 MHz

 oscilloscope Sensitivity of Hitach's V-202 dualchannel 20 MHHz oscilloscope is1 mV /div. This relatively low-cost instrument ($£ 2660$ exc. v. .a.t.) has
20ns/div maximum sweep speed 20ns/div maximum sweep speed
and channel addition and subtracand channel addition and subtrac-
tion facilities. Triggering modes in-
clude auto clude auto and tv', in which an
active circuit is used for vide sigactive circuit is used for video sigg
nal sync. separation. The $51 / 2 \mathrm{in}$ rectangular c.r.t. has a graticule (with variable illumination) printed
directly on it to give, it is claimed
parallax-free readin directly on it to give, it is claimed,
parallax-free readings. Focus com pensation for brightness changes is
automatic. Reltech, Office Suite 1 Coach Mers, The Broadway, S
Ives, Huntingdon, Cambs PE1? 4BN.
WW305

Coaxial cable

 assembliesFlexible p.t.f.e.-dielectric coaxia cables and cable assemblies can be supplied by Pascall for use in phas array systems, computer networks
microwave links and other such ap microwave links and other such ap.
plications. Astro-superfex ' ${ }^{2} 2020$
cabie, designed by Astrolab Inc., pications. Astro-super-lex
cable, designed by Astrab Inc.
has a loss figure of 1 Itol 100 . has a loss figure of $13 \mathrm{~dB} / 100 \mathrm{ft}$ a
1 GHz and an outside diameter of 1 GHz and an outside diameter
0.163 in . Loss of the 0.108 in diam ter 32013 type cable is $22 \mathrm{~dB} / 100$
at 1 GHz at 1 GHz . V.s.w.w.r. depends on the
type of connectors used but type of connectors used but is
typically 1.25 at 1.4 GHz using
SMA and TNC terminations. Both SMA and TNC terminations. Both
cables have fused p.t.f.e. outer
sleeves and can be bent cables have fused p.t.f.e. oute
sleeves and can be bento an inide
radius of 1 mm . R.f. .eakage sleeves and can be bent. leakage is
radius of 1 mm . R.f.
given as -110 dB minimum. As given as -110 dB minimum. As
semblies can be supplied with semblies can be supplied wis.
SMA, TNC, or BNC terminations.
Altentive Alternatively, cable can be supplied unterminated. Pascall Electronics
Ltd, Hawke House, Green Ltd, Hawke House, Green St, Sun-
bury-on-Thames, Middx TW16 6RA.

16-bit d-to-a A self-calibrating 16-bit digital-to ${ }^{\text {DAC74 }}$ is available from Bur Brown. Output can be either 0
10 V or -10 V to +10 V and lop or -10 V to +10 V and erro
specifications are ± 0.51. .s.b. max specifications are ± 0.5 1.s.b.b. maxi-
mum non-linearity, ± 1 l.s.b. maxi

achieved. For tv distribution
systems where 55dB is acceptable systems
the equivalent ranges for the two cases are 3 and 10 km and for sur-
veillance, where 45 F will veillance, where 45 dB will do, the
figures are 4 and 12 km . A p-ifigures are 4 and 12 km . A p-i-n
diode receiver option with laser can increase dynamic range as well as
giving a range between the two exgiving a range between the two ex-
tremes. WWithout h.f. emphasis,
tarmonic distortion of the sound remes. Wibout h.I. emphasis,
harmonic distortion of the sund
cricuits is less than 0.5%; video circuits is less than 0.5%; video
signal frame and line time distorSignal frame and line time distore
tion, intermodulation, luminance
non-linearity, and differential gain are all below 1% with differential
and phase below r. It is a 9 inch rack
mounting transmitter and receiver mounh ing transmiter and receiver,
with interconnecting cable of 3.5dB/km attenuation. Standarc Telephon und Radio AG, CH-805
Zürich, Friesenbergstrasse 75. ww3io

Lightweight video recorder
Seen at last September's Berlin radio show, G Grundig's VP100
portable video recorder uses a casportable video recorder uses a cas-
sette only slightly larger than an
audio cassette. Made by Futec audio cassette. Made by Futec
Future Technology) of Osaka but
to Grundig specifications, the
ystem. The E series of centrators combines the necessary
modules in a sing modules il a a single case so that two
unitm will allow
erm erminals to be connected to azicentral computer or processor vaia a
serial data link. A standard data sencentrator consists of a statistical
cultiplexer for bet dat multiplexer for between 4 and 1
programmable asynchronous chan programmable asynchronous chan
nels and one synchronous channel using any protocol. The
multiplexer output is fed to an inte multiplexer output is fed to an inte-
gral high-speed modem which
ffers data rates gral high-speed modem whic
offers data rates up to $9,600 \mathrm{~b}, \mathrm{p}$.
The unit The unit also features a 16 K buffe
to cope with peak data transmis to cope with peak data transmis
sion, together with a flow control to
halt data from a conpute hant dotat from a computero ror intetlili-
gent terminal if the buffer is nearlgent terminal if the buffer is nearly
full. Data transmission is contin full. Data transmission is contin
uously monitored and if an error is
detce detected the transmission is re
det peated, which provides automatic
correction for errors introduced by orrection for errors introduced by,
for example, noisy telephone lines. Sor example, noisy telephone bines
Because all of the functional blocks
necessary for data concentration ara necessary for data concentration are
housed in a single case, expansio housed in a single case, expansion
and programming are straightifor-
ward. Timeplex Ltd, Timeple ward. Timeplex Ltd, Timepplex
House, 77 Boston Manor Road,
Brentford, Middlesex Brentford, Middlesex.
wW312

ww311

$.110 \times 70 \times 10 \mathrm{~mm}$ cassette contains recording time The head-to tape speed of $4.7 \mathrm{~m} / \mathrm{s}$ is achieved with a linear speed of $22.5 \mathrm{~mm} / \mathrm{s}$ in conjunction with a 60 mm dia. rotating head. A variable speed facility, both fast and slow, is provided as well as a freeze frame mode. At $25 \times 6 \times 18 \mathrm{~cm}$ and weighing 2.3 kg including batteries, Grundig expect it to be the smallest and lightest video recorder when it is marketed in the UK in the second half of next year (January in Germany). Grundig Ltd, Newlands Park, London SE26 5NQ.	Audible alarms Two alarms from the American So nalert range will emit a continuous $616 \mathrm{PC} / \mathrm{JC}$ is a 16 mm deep, 42.7 mm diameter device for board mount ing, which produces a $68-78 \mathrm{~dB}(\mathrm{~A})$ d.c. at $1-4 \mathrm{~mA}$ will drive the units, which pulse at $2-9 \mathrm{~Hz}(\mathrm{PC})$ or $0.5 \mathrm{~Hz}(\mathrm{JC})$ when one of the pins is Highland Electronics Ltd, 8 Old Steine, Brighton BN1 1EJ. WW313
Data concentrator The technique of data multiplexing to improve the efficiency of a single data link is certainly not new; however, many systems comprise two or three units at each end of the	I.c sockets with integral supply decoupling capacitors as described in September's New Products section are now available in the UK through Dage Eurosem, Rabans Lane, Aylesbury, Bucks HP19 $3 R 9$.

Adding up to a

matter of time

The other day I was looking at a 1978 number of Reader's Digest. It would have been a more recent issue, but my suppliers - the church jumble sales that abound in our neck of the woods - tend to lag a bit ehind W. H. Smith.
T had just finished a captivating piece on when it struck me that $R D$ must be all hings to all men. It offers tales of adventure on land, sea and air, stories of people triumphing over adversity, word-power
tests, jokes, philosophical titbits . . you name it. What's more, it doesn't take up a lot of room.
Additionally, it carries some of the best ads in the business. One in particular caught my eye. It was for a luxury leather
briefcase for executives wishing to aspire to company chairman.' Now just you show me the chap with fires of ambition in his belly who could resist such a come-on. I almost succumbed myself.
electronic products, too, rate $R D$ highly as an advertising medium. The digital watchmen, for instance, were there in strength, each trying to cap the rest. One was rapturizing about a timepiece (which delicate structure). which embodied no less than six main functions, including an audibe signal to mark the passing of every hour on the hour. You could, if you felt the urge, convert it into a stopwatch. But
the most confidence-building claim of all was that it was water-tested to 30 metres. This made me wonder who the advertiser was aiming it. Obviously it wasn't just any old lad on the street who only wants to pubs open. So just how many people are pubs open. So just how many people are
there around who really need such a detailed monitoring of time? And how many more spend any appreciable time fully or partially immersed in all that $\mathrm{H}_{2} \mathrm{O}$? Another enterprising merchant went
distinctly bananas over his up-market combined digital watch and ballpoint pen. The watch half offered all the usual horological information and was - I was re-
lieved to learn - accurate to within 60 lieved to learn - accurate to within 60
seconds a year. But the pen half was a bit seconds a year. But the pen half was a bit
of a let-down: nowhere was there any mention of being able to write with it 30 metres down.
Pocket calculators were, of course, there in profusion, all offering a range of mind the whole it was a rather wonderful afternoon) how widely they're actually sed. All-in-all I reckon that this mania for personal electronic aids has got a little out
of hand. Before the cult developed, the first thing young executives did when settling down to a meeting was to get out
their fags and lighters. Now they plonk their calculators down on the deck instead. The fad, moreover, has not remained confined to the business sector. I've seen housewives toting the
I suppose there must have been a similar reaction back in the 6th century when the chinese came as an alternative to taking off their socks when they wanted to count up to 20 . Or when clocks first gave sundials the big elbow. Nevertheless, I can't help feeling there's an urgent need for sweet reasonthings are going to get worse. We may even reach the stage when you're out of date unless you're sporting a combined bath thermometer/pollen counter with a .d.u. readout - worn on the wrist. lating with the most sophisticated device of all - the human brain. Nor let an obsession with hyper-accurate timing grab us oo firmly by the forelock. Neither above he water nor under it.

Credit where credit is due

Can someone please tell me - and there must be a reason - why we have to endur at the end of tv programmes a long list of
nearly everybody who has had some part in its making? Hardly a soul is left out. From the man who wrote the script based on an daptation of the book of the film, to the irl who dabbed powder on the leadin dy's damask chee
re necessary, they should antic references prehensive. One glaring omission is British Telecom. The contribution made by their ngineers is basic to every programme herher it's the late nighn An outstanding examp
was the coverage of the Royal Weddin This for BT was a landmark. As well a supporting BBC and ITV, British Telecom provided facilities for 100 foreign tv comAround 750 miles of cable, 15 microwave links, 80 vision circuits, 168 commentary inks and 331 control circuits for tv prouction staff were provided. In fact, a BT sented about four months normal working or an o.b. team. Now then, BBC and ITV, with this
splendid example in mind, isn't there the
trongest of strong reasons for giving BT an automatic place in your post-proAnd if you can get the credit in before the producer's - or at least before the assistant hairdresser's - so much the bet-

Tv all around

Sit down for a minute and ponder on how far along the road in tv techniques we've come since the days of Baird's first flickering images.
Thanks to amazingly swift advances in component technology we have sets that need substantially fewer bits and pieces and virtually no routine adjustments. We have fast warm-up and touch tuning or remote control. Transmitted programmes and we can buy tapes (soon discs as well) for reproduction. The news and information services, Ceefax and Oracle, are but a button-push away. We can even link our sets to the telephone and interrogate the Direct broadcas
is, so to speak, very much in the air. And to complete the all-encirclement there appears to be a new and growing interest inIn the June issue of W W I In the June issue of WW I drew attenadopt in order to savour the delights of d.b.s. to the full, I also pointed out some fhe initial inconveniences involved, like mounting a dish aerial on the roof or inding room for it indoors. The postcard I me my remarks were worth the making. So far I haven't made such an in-depth nalysis of cable te, but I can well believe hat here, too, there are prical points to Personally I've always had a mistrust mounting to plain fear - of things underground. (It probably dates from the days of acting as a burial object for the kids respect the competence of those on the echnical side of cable distribution, I must point out that there are a lot of other people at it as well. The telephone, gas, water and electricity boys, for example. Now, one of the disadvantages of this
underground lark is that you can't see what's going on once you've replaced the earth. So if someone on an offday has done something silly with the various cables, ou don't know about it until funny things begin to happen in the house. It would be a on the bath tap and got the soundtrack of Bonanza instead of hot water.

WIRELESS WORLD DECEMBER 198

UNIQARD

 range of vfrom
WESSEX MICROCOMPUTERS

Underside		Topside
Uncommitted area for wire-wrap or hard wiring of ancillary circuitry		Pistribution tracks.

WW - 089 FOR FURTHER DETAILS

CASIO
 WORLD BEATERS

READV FO: F'X-702F" 5680

X702P RRPf134.95 ONLYf119.95

Flattens the Sharp PC1211

Price includes VAT, PYP. Delivery normally by return of post.
TEMIPUS
Dept WW/12 FREEPOST, 164-167 East Road, Cambridge CB1 1DB Tel: 0223312866
WW - 032 FOR FURTHER DETAILS

HF ANTENNA

* MODE: Full half wa
\star Bearation. Up to 4 spot
frequencies.
\star POWER .
SOW (PEP
80OW (PEPP).
SWR Be Better than 1.5:1
A

THE SMC TRAPPED DIPOLE ANTENNA

 , memem
SMCTDAI2 2 treq $£ 125$, SMCTDA/3 3 freeq $£ 170$, SMETDAA4 POA
Complete Installation

Smc Masis and Towersigiosedeceatier

SOUTH MIDLANDS COMMUNICATIONS LTD.

WIRELESS WORLD DECEMBER 1981
U.K. RETURN OF POST MAIL ORDER SERVICE, ALSO WORLDWIDE EXPORT SERVICE

RADIO COMPONENT SPECIALISTS 337 WHITEHORSE ROAD, CROYDON
Open 9-6. Closed all day Wed. Open Sat. 9-5.

TELEVISION SOUND TUNER

WIRELESS WORLD DECEMBER 1981

TEST INSTRUMENTS

SAFGAN DUAL TRACE SCOPES
SAFGANDUAL TRACE SCOPES
DT-410 £169 DT-415 £175 DT-420 $£ 188$
Probe (X1-REF-X10)- £11.50. P\&P $£ 2$ or parce
service $£ 6.50$ (+ VAT)

ww - 011 FOR FURTHER DETAILS

WIRELESS WORLD DECEMBER 1981

RF POWER TRANSISTORS-EX-STOCK

COMMUNICATION TUBES-EX-STOCK

SEND NOW FOR PRICE LISTS SHOWING QUANTITY DISCOUNTS

 WW-073 FOR FURTHER DETAILS

TOU CATMBEAT ILP:IPOLAR POHER anPs=0; POHERAND PRICE

CAN CAR CAR

TRADE COUNTER

 NOW OPENEverything you'll need to sell in CB RADIO YES EVERYTHING!
SWRs - POWER SUPPLIES - ANTENNAS -
P.A. HORNS - RECEIVERS - RIGS - SPARES P.A. HORNS - RECEIVERS - RIGS - SPARES
AND MUCH MUCH MORE. WE ALSO STOCK WATCHES - CORDLESS PHONES - WALKIE TALKIES - VIDEO TAPES - ELECTRONIC
GAMES AND ACCESSORIES

TRADE ONLY

B. BAMBER ELECTRONICS

COMMUNICATIONS HOUSE
5 STATION ROAD - LITTLEPORT - CAMBS. TEL: ELY (0353) 860185

WW - 021 FOR FURTHER DETAILS

WHTCNIP
 リ10 $=$ POWERAMP?

- Please send me the following
- ILP mooules

- Name

$$
\begin{aligned}
& \begin{array}{l}
\text { (Luses will suticicol) } \\
\text { Ultra-i ispecifications: }
\end{array}
\end{aligned}
$$

Avils suticce).

267 \& 270 ACTON LANE, LONDON W4 5DG.
 G. Telephon Telex 29142

 TRANSFORMERSSTABILISED POWER SUPPLIES

BRANDENBURG Photomultiplier PSU. 19in. rack mounting. Mietered, current limit protection 375 500VV-1K5V at 5 mA . \qquad 376 660V- 1166 V at 10 mA .
All models. E40.

PIONEER MAGNETICS POWER SUPPLIES $5 V 150 \mathrm{amp}$, utput input 115 vac. (Switchmodel). Price $\mathrm{fi20}$ each. 1. amp Various other makes of power supplies in stock. Please send
for lists.
S.S. . . .lease. SPECIAL OFFER. 10 M
 5 million Disc Ceramics in stock. Ceramic plate. Multi-layer ceramic. Low voltage discs.
Monolithics. Ceramics. High voltage discs. Subminiature plate, epoxy cased. Send for lists or please phone for details.

4 MILLION

I.T.T. ELECTROLYTICS NEW

AND BOXED NOW IN STOCK

EN 1212 AXIAL EN 1235 RADIAL
The whole range available at unbeatable prices. Send for List

PYE HEAD CLEA SETEES Brand boxed 50 pea.

CASSETTE DECKS: With stereo heads, mechanically-
complete, but with no electronics. Smart black
modern finish Modern finish. $\begin{aligned} & \text { f5.00 } \\ & \text { We have vevry large quanti- } \\ & \text { ties of of Disc Ceramics High }\end{aligned}$ Voltage, Plate, octile $£ 15 / 1000$. Please send for
our Disc Ceramic Stock Lists. our Disc Ceramic Stock Lists.
PIHER PRESETS Very large stocks, PT10,
PT15 enclosed types. Please
send for our preset list. Most send for our preset list. Mo
values $100 \mathrm{R}-5 \mathrm{M}$ KEYSWITCHES
 10P 12 A 600 VAC
$49 \mathrm{~mm} \square$ Fascia. We have the following quan-
tities of low profie PLATTD I.C. sockets manu-
factured by Wins

D TO A CONVERTERS

WIRELESS WORLD DECEMBER 1981

THE W.W. DISK OFFER

We have obtained a limited stock of European single sided mini floppy drives so please get orders in soon
Circle the enquiry number for data
Total U.K. price including VAT at 15% and
carriage, CWO

ONLY £155 EACH INCLUSIVE

(Drive $£ 132, P$ and $P £ 2.78$, VAT £20.22)
Please make cheques and P.O.s payable to
W.W. Disk Offer and send to:
W.W. DISK OFFER

49 Milford Hill Batford Herts
Please call 0582-429122 to check on availability. before ordering
Allow 21 days for delivery. This offer applies to
U.K. only and is subject to availability For non only and is subject to a availability. For
U.K. orders send SAE for quotation
Also a few double sided $8^{\prime \prime}$ drives of the same $€ 395+f 5$ carriage + VAT giving a total of cwo.
price of $£ 460$ each
W - 085 FOR FURTHER DETAILS

G. F. MILLWARD ELECTRONIC COMPONENTS LIMITED P.O. Box 19, Praa Sands, Penzance, Cornwall
Telephone GERMOE (073-678) 2329

Please send me the following
ILP modules

WIRELESS WORLD DECEMBER 198

E132

LOW PROFILE I.C. SOCKETS

	texas			SCANBE		
	${ }^{1+}$.	.00+		. 059	$100+$.049	$\stackrel{1000+}{044}$
${ }^{14} \mathrm{pin}$. 09	. 082	. 073	. 082	077	064
(18 pin	. 125	.113		. 104	. 089	${ }_{081}$
20 pin	. 14		. 113	. 12	. 10	092
22.pin	. 15	. 135	. 12	. 143	122	111
24 pin	. 15	. 135		. 146	. 132	,
28 pin	. 16	. 145	. 125	. 135		12
40 pin	. 24	. 215	. 19	23	195	

Farrison Bros.
22 Milton Electronic Distributors
2 Milton Road, Westcliff-on-Sea Tel: Southend-on-Sea (0702) 32338

MXEESADERS YUMELER DRIVERS AMDMORE AL NAWFROMILP

wW - 015 FOR FURTHER DETALLS

WIRELESS WORLD DECEMBER 1981

IIP POW:R SUPPIITS most whille loirlil TRATSHOMERS

which include our ow How to order Freepos

103

WIRELESS WORLD DECEMBER 198

			anm
	Mix Mixikizizizi		

WE PURCHASE

Surplus component stocks, redundant materials,
Surplus component stocks,
obsolete computers, for cash.
We also collect - distance no object. Just call:

C. T. Electronics (Acton) Ltd.

267 \& 270 Acton Lane, London W4 5DG Telephone 01-747 1555; 01-994 6275. Telex 291429

WIRELESS WORLD DECEMBER 1981

RADIO TELEPHONE EOUIPMENT PYE OLYMPIC M201 High band AM multi-channel sets complete, but less loudspeakers and mikes. Few only at $£ 100$ each plus VAT. PYE PF8 UHF hand portable complete but less batteries. 3 only. BARGAIN at only $£ 80$ each plus VAT. Only Only $£ 40$ each plus PYE PF2 UB. Ideal for 70 cm . These sets are in new condition. Complete with mike, battery and aerial. Only $£ 80$ each plus VAT. 2 only at $£ 50$ each PYE PC1 Radio telephone controller, good condition. 2 onl plus VAT. each plus VAT. PYE MF5AM Motofones low band sets complete and in good condition. Only $£ 45$ each plus VAT. PYE POCKETPHONE base station F50 complete less mike. $£ 45$ each plus VAT. PYE WESTMINSTER W15 AMD mid band multi-channel sets only. No mike, speaker, cradle, or leads. $£ 45$ plus VAT Pe REPORTER MF6AM, high band sets, complete but less cradle. Few PYE RTC Controller stations, radio telus in or UHF fixed PYE WESTMINSTER W15AM High band and low band available. Sets complete and in good condition but are less speakers, mikes, cradles and T leads (sets only), £70 each plus VAT PYE WESTMINSTER W15AMB mond Low band complete with control gear and accessories and in good condition. $£ 80$ each plus VAT. PYE WESTMINSTER W15AM Mid Band crystalled and converted to $129.9 \mathrm{MHz} .130 .1 \mathrm{MHz} \& 130.4 \mathrm{MHz}$. Very good condition. $£ 140$ each plus VAT. WESTMINSTER W30AM Low band sets only, no control gear. Sets complete and in good condition. $£ 45$ plus VAT. PYE BASE STATION F27 Low and high band, few only at $£ 75$ each plus PYE BASE STATION F3OAM Low and high band with and without T/T. Prices from $£ 220$ each plus VAT. PYE CAMBRIDGE AM10D Dash Mount sets, complete and in good condition but untested. $£ 40$ each. PYE CAMBRIDGE AM10B Boot Mount sets. High Band 12.5 kHz sets only, no control gear, good condition. $£ 125$ each Please Note all sets are sold less crystals unless otherwise stated. Sets can be crystalled on your frequency at $£ 20$ per channel extra. CAARIAGE ON RADIO TELEPHONE EOUPMENT MOBILES f 2 BASESTACH B. BAMBER ELECTRONICS 5 STATION ROAD, LITTLEPORT, CAMBS CB6 1QE TEL: ELY (0353) 860185 WW - 020 FOR FURTHER DETAILS CAVERN ELECTRONICS 94 Stratford Road, Wolverton, Milton Keynes MK12 5LU Telephone: Milton Keynes (0908) 314925

solvesthe'mystery' of micro-processors.

TECHNICAL SPECIFICATION
CPU
SOFTWARE COMPATIBILITY
RAM
ROM
INPUT/OUTPUT
MONITOR

DISPLAY
AUDIO CASSETTE INTERFACE 165 bitper second average rate for data transfer between memory and cassette tape
Provides all buses of CPU, channel signals of CTC and 1/O port bus of PIO for user's expansion.
Circuits are provided.
Circuits are provided.
A 2.25"- diameter speaker is provided for user's applications.
PARALLEL I/O CIR
PARALLELIV CIRC
DRIVER CIRCUITS
USER AREA
POWER REQUIREMENT
USER'S AND EXPERIMENT
MANUAL
OPTIONS
KEYBOARD
Provides a $3.5^{\prime \prime} \times 1.36^{\prime \prime}$ wire wrapping area for user's expansion. Single +5 V DC.
Complete self-learning text with experiments and applications.
Z80-CTC EPROM programmer board Prototyping board Z80-PIO Breadboard Audio Cassette 36 keys including 19 function keys, 16 hex-digit keys and 1 user defined key
Z80 CPU high performance microprocessor with 158 instructions. Capable of executing Z80/8080/8085 machine language program 2 K bytes expandable to 4 K bytes.
2 K bytes of sophisticated monitor expandable to 8 K bytes 24 system I/O lines.
2 K bytes of sophisticated monitor. It scans the keyboard and executes the command entered immediately after the power is turned on The monitor includes: system initialization, keyboard scan, display scan tape write and tape read 6 digit $0.5^{\prime \prime}$ red LED display.

EXTENSION CONNECTORS

COUNTER TIMER CIRCUITS
PARALLE: I/O CIRCUITS

OR to truely
Use the unique MICRO-PROFESSOR to truely understand the inside workings of microprocessors. Open up a whole new spectrum of projects in home electronics, or simply use the MICROPROFESSOR as a practical learning/teaching aid.

Flight Electronics Ltd.
Tel: (0703) 31323/34003

To receive your MICRO-PROFESSOR Complete the coupon today! Please send me MICRO-PROFESSOR(S)
I enclose cheque/P.O. for £.,........... +p.and p. £ 1.95
Name:.
...

Address: ..
Please allow 21 days for delivery
Flight Electronics Ltd. Flight House, Quayside Road Bitterne Manor, Southampton, Hants SO2 4AD. 00

The MicroPROFESSOR

MICRO-PROFESSOR is a low-cost Z80 based microcomputer which provides you with an interesting and inexpensive way to get into the microprocessor world. MICRO-PROFESSOR is a microprocessor learning tool for It is also an ideal microprocessor educational tool for teaching in schools and universities. Besides, MICRO-PROFESSOR is more than a learning tool. It provides a wide range of applications such that you will be surprised at its amazing power.

The main object of MICROPROFESSOR is for the user to understand the software and easily and conveniently. Besides
the complete hardware/software system, you have the User's experiment manual available to you. It includes self-learning tex with 20 experiments which range mimple software programming to desig

2 K bytes of monitor source program with documentation is also provided in the manual. It shows how to write system programs including system initialization, keyboard scan, display scan, tape write and tape read
APPLICATIONS:
Learning and teaching tool ow cost prototyping tool ow cost development tool Tester

Process controller Electronic game Electronic music box Master mind Timer
Noise generator Home appliance control Burglar alarm and many more Low Price, High Capability experimental tool for only $£ 49.95$ POWER SUPPLY A 9V, 0.5A Adaptor is provided. Z80 is a trade mark of Zilog inc

SPECIAL INTRODUCTORY OFFER The manufacturers will send 2 PACKS, post free, $£ 25+$ VAT The single development pack costs only $£ 15+$ VAT, p\&p. To accept this ofter simply Circle No. 78 on reader service card. For 4.page

Kit Case System

Invaluable for prototype, pre-proauction, experimental and
design projects in the electronics, electrical, instrumentation design projects in the electronics, electrical, instrumentation,
control, general engineering and other industries.

This KIT CASE SYSTEM, is a new concept offering modular This KIT CASE SYSTEM, is a new concept offering modular
design flexibility, self assembly, extreme versatility, providing a wide variety of shapes and sizes of cases to be built. The basic
wher system builds 12 sizes of cases in 36 combinations. Two packs
(see special offer) - over 30 sizes - 1000 combinations.

The high quality kits are produced in high impact, flame retar-
dant

Special features incluse nylon insulating pillars, precision moulded long tracking mating faces, P.C.B. mounting grooves and many more to facilitate ease of fitting P.C.B.s, facias,
dummy front panels, rigidity and rapid assembly. dummy front panels, rigidity and rapid assembly.

Cobb-Slater Instrument Company are specialists in precision

COBB-SLATER INSTRUMENT CO. LTD. Cosim Works, Darley Dale, MATLOCK. Cosim Works, Darley
Derbyshire, DE4 2GG.
Tel: Darley Dale 2344.

o obtain further details of any of he coded items mentioned in the Editorial or Advertisement pages f this issue, please complete one or more of the attached cards entering the reference number(s). Your enquiries will be passed on to the manufacturers concerned and you can expect to hear from them irect in due course. Cards posted from abroad require a stamp. These Service Cards are valid for six months from the date of publication.
Please Use Capital Letters

If you are way down on the circulation list, you may not be getting the information you require from the journal as soon as you should. Why not have your own copy?

To start a one year's subscription you may apply direct to us by using the card at the bottom or this page. You may also apply to the agent nearest to you, their address is shown below.
overseas subscription AGENTS Australa: Gorton \&

 Cyprus: General Press

 Donmark: Dansk
Banadistibutiont
Howidrow

 Hollend: Van Ditmarin.

 Mansion Ext, Modememe
Coma Road, Bombory 1

 Tally: Interconinenenal
 Malaysia: Times
 30 Kim Sens. Road
Singapoores. 9 , Malaysial. Malta: W. H .Smith
Continontal Lid.

 Wellini
 2unsion 5ixitu

 and

 ${ }_{4}$ Seaoo


```
Wireless World: Subscription Order Form
```

To become a subscriber to Wireless World please complete the reverse side of this form and return it with your remittance to

Subscription Manager,
IPC Business Press,
Oakfield House, Perrymount Road,
Haywards Heath, Sussex RH16 3DH
England

Enquiry Service for Professional
Readers ONLY.

AIRWAVES ELECTRONICS

151 LONDON ROAD, CAMBERLEY, SURREY GU15 3JY WW.075 FOR FUPTHER 62949

PRINTED CIRCUITS
 FOR WIRELESS WORLD PROJECTS

\qquad

 Audio spectrum analyser-May $1980-3 \mathrm{s.5}$.
Multisestion equalizer-June $1980-2 \mathrm{~s} . \mathrm{s}$. Hoating-bridge power amp- Oction $190-1$ s.s. (12V or 40V)
Nanocomp - Jan. 1981-1 d.s. 1 s.s.
 opto-electronic contact breaker (Delcol-A0pril $19811-\cdots$ Boards are glassfibre, roller-tinned and drilled .rrail U.K. postage.
Airmail add 20%, Europe add 10%, Insurance 10%,
Remittance with order to
M. R. SAGIN, 23 KEYES ROAD, LONDON, N.W. 2

WW - 095 FOR FURTHER DETAILS

CBWorld DIARY

By arrangement with Charles Letts, the By arrangement with Charles Letts, the
famous diary people, we are to sell through $C B$ World a limited number of CB Diaries These diaries would normally be sold through bookshops and main newsagents but to introduce them for 1982, Letts have agreed that we should market them through the publication. Contents include:

How c.b. works
SWR your c.b. radio
-Setting up a Home Based c.b. unit
-Setting up a mobile c.b. unit
c.b. fault finder guide

- 10-code
- Q-code
- Phonetic alphabet

Plus section for your Good Buddies, their handles, their home 20s and their land lines.
£2.45 (inclusive

Appointments

Advertisements accepted up to 12 noon
Monday, November 30 for January issue, subject to space being available.

DISPLAYED APPOINTMENTS VACANT: E13.50 per single col. Centimetre (min. 3 cm) BOX NUMBERS: $£ 1.50$ extra. (Replies should be addressed to the Box Number in th PHONE: OPHELIA SMITH, 01-661 3033 (DIRECT LNE)
Cheques and Postal Orders payable oo IPC Business Press Ltd.

A HOST OF
ELECTRONICS APPOINTMENTS
£5,000-£15,000 p.a.

ELECTRONIC COMPUTER AND MANAGEMENT APPOINTMENTS LTD 148-150 High St. Barkway oyston Herts SG8 8EG

Appointments potential in our future

Founded in 1936, Marconi Instruments today employs some 2,000 people in the design, development, production and marketing of its advanced momications test equipment and A.T.E. To meet the challenges of tomorrow's markets, we need more electronics designers and technicians. And need production and service personnel as well. If you would like to develop your potential in exciting future of Europe's leading test equipment specialist, complete the coupon and send it to us at the address marcons below:instruments
Return this coupon to John Prodger, Marconi Instruments Limited,
Freepost. St. Albans, Hertfordshire

| Name | | |
| :--- | :--- | :--- | :--- | :--- |
| Address | | |
| | | |

We've Made a Name

 for Ourselvesand you could do the same
As EaE, we earned a reputation for the quality of
our work in oiffield communications. our work in oilfield communications. And now that we are part of the Palmer EaE Group, our activities are expanding faster than eve
Which is why we require

Radio Technicians and Communications Engineers We are looking for seasoned professionals-
Technicians with experience of HF, MF, VHF and UHF, and Engineers familiar with Microwave (and with HNC qualifications under their belt). In the North Sea, earnings are up to $£ 14,000$, while overseas posts could be worth up to $£ 20,000$ If you'd like to make a name tor yourself, in one of the best jobs in the business, please write to Mike Futter, Palmer EaE Limited, Offshore House, $284-285$ Southtown Road,
Gt. Yarmouth, Norfolk, NR31 OJB.

PALMER EAE

Test Engineers and Technicians -Wembley,Middlesex

Racal-BCC are members of the automatic testing and fauld finding of highly successful Racal Electronics the Company's equipments at various Group and are world leaders in the stages of manufacture. design and manufacture of tactical Applicants should be qualified to We require a number of lest $\quad \mathrm{HNC} / \mathrm{HTC}$ level and have experience We require a number of test
technicians and test engineers to fill a of radio communications equipment.
We offer excellent conditions of technicians and test engineers to fill a
variety of grades within the Test $\begin{gathered}\text { We offer excellent conditions of } \\ \text { service including good basic pay and a }\end{gathered}$ variety of grades within the Test \quad service including good hasic pay and
Department. The department is Group Productivity scheme. responsible for the manual and Group Productivity scheme.

Racal-BCC
BACAL
World leaders in electronics

DODolby

ELECTRONICS PRODUCTION
 ENGINEERS

South London

c. $£ 7000$

Dolby Laboratories, the successful and progressive manufactur-
ers of por professional audio
noise reduction eoquipment reauire ers of professionne audionise reductionteguipment require
 into production, iliaison with the R . \& D. team, product improve.
ment and component specification.
Ideal applicants will have several years' experience in electron-
ics manufacturing. However, less-experienced electronics grad
 tunity to learn the ditails of electronic design from a production
viewooint. The ability to work proiects through to successful viewpoint. The ability to work projects through to
conclusions without close supervision is essential.
Competitive salaries and excellent employment conditions are
offered. For applical
DO
DOLBY LABORATORIES INC.
346 Clapham Road

PRODUCTION MANAGER

KILLALOE, COUNTY CLARE
IR. $£ 12,500$
Peak Electronics Limited is a private Irish Company with international subsidiaries which manufactures intruder detector and traffic control equipment using Infra-Red and Microwave technology. About 60 people are em-
ployed in total 50 of whom are engaged directly in proployed in total 50 of whom are engaged directly
duction. The workforce is predominantly female.
Due to an expanding range of products and increasing sales, the company now wishes to appoint an experienced Production Manager.
Reporting to the Operations Director the Production put requirements to required quality and cost standards; will be expected to contribute substantially in such areas as production engineering, industrial engineering and instituting and developing the necessary systems for the effective management of the department.
Candidates will ideally have had a number of years' experience in electronic and light mechanical assembly. This experience having been gained in production line managem
control.
Salary is likely to be in the region quoted but would not be a limiting factor for the right candidate and normal benefits will apply.
Applications in writing, giving personal and career de-
tails, should be sent to the Managing Director technologies Limited, Sunley House, 57 High Street, echnologies Limited, Sunley
Edgware, Middlesex, HA8 7XA.

Appointments

Broadcasting in Cambridge

TELECOMMUNICATIOHS ENGIMEERS

multiplexmicrowave ENGINEERS
RADIO SYSTEMS ENGINEERS
Saudi Arabia - Nigeria • Malta • Aberdeen
Experienced in either HF/VHF/LUFF or Troposcatter/
TELEPHONE SWITCHING ENGINEERS Saudi Arabia • Nigeria
Preferably with electronic exchange experience.
TECHNICIAN INSTRUCTORS and PLANNING ENGINEERS With a minimum of 5 years' experience in any of the above disciplines.

Applicants for all positions should hold a
imum of a final City and Guilds. Salaries are minimum of a final City and Guilds. Salaries are experience.

For further information and to arrange mmediate interview, telephone Windsor (07535) Windsor, Berks.

CㅏㅌTSULT

B8W

manufacturers of
monitor loudspeakers Applications are in ited for a posst i
the B\&W research \& developmen
department

Transducer Designer

Experience in design and construction of prototype
moving-coil direct-radiator loudspeaker drivers and a
thor horough understanding of their operating principles
The successful candidate will be largely responsible
for the dievelopment of loudspeaker driver designs and their transfer to production, within guiderliness laid
down by the department Director Dedicated flair and initiative are also an important requirement, along with the ability to organise a ppanned development
programme. Training and guidance in the use of the
Laser Vibration Interterometer system and ComputerLaser Vibration Interferometer system and Computer-
Aided design facilities available, will be given as necessa
Salary is negotiable. Please apply in writing to Dr G.
J. Adams.
B\&W LOUDSPEAKERS LTD Meadow Road, worthing, West Iussex EN11 2RX

Opportunitiesin09
 -Libya tax Advantages

Oasis Oil Company, one of the world's major producers of oil, is expanding and updating its
communications facilities. To this end the company is now seeking to recruit suitably qualified Engineers and Technicians for the following opsitions to work either at its theadquararers in Tripolio or
in developed sites in the field. Competitive, tax protected salaries are on offer to fill these vacancies.
SYSTEMS SUPERVISOR (MAINTENANCE) (Tripoli Based) c. $£ 20,000$

Applicants should have a bachelor degree in Electrical/Communication Engineering and at leat
ten years experience in operation and maintenance of communications systems. The person appointed will be requiredration ton and maintenance of communications supervise the activities of the comunications
maintenance organisation This will troposcatter system, multi-h his mill involve adiusting, testing and modint.ing the coastal . He will also be responsible for diverse multiple

SENIOR ENGINFER

(TELECOMMUNICATIONS)
(Tripoli Based)
NTICATIONS
To apply you shou thave a degree in Electrical/Communication Engineering with at least ten
years experience in the design and maintenance of communications
 unication for
SENIOR ENGINEER (TELEPHONE)
(Tripoli Based) \qquad c. $£ 20,000$

Engineering Experience must include at least ten years in the design and mintenance of ens
COMMUNICATION
MAINTENANCE SUPERVISOR
(Field Based)
a qualification from a recognised technical training establishment c. $£ 16,000$
and fifteen years experience in the maintenance of communications systems. The successful applicant will maintenance and repair of many types of equiciment. These wellequilude microwave two-var
radio. S. B. telephone and PABX's. He will also assist with on-the-ibb traing of new technicians.
COMMUNICATIONS TECHNICIANS (Tripoli Based)
You must possess You must possess a qualification from a recognised technical institute and have had a t least five
years experience in the maintenance of communications equipment such as microwave, base and

TELEPHONE TECHNICIANS

OASIS BENEFITS PACKAGE

Free furnished married/single housing in Tripoli town.
Free meals and housing plus desert allowance for field-based personnel. Vacation: Tripoli-based - $\mathbf{3 0}$ days per year with paid air fares to point of

$$
\text { Field-based }-\begin{gathered}
\text { origin } \\
30 / 20
\end{gathered}
$$

commuting schedule with 7 round-trip Free medical attention paid air fares per year to point of origin.
Attractive provident fund plan.
Low cost accident insurance plan
School facilities and children's education assistance for Tripoli based families.
sonal data to R. Nash, Personnel Representative at:
Oth Floor, 33, Cavendish Square, London, W1M 9HF Tel: $01-4997255$

Appointments.
WIRELESS WORLD DECEMBER 1981

MICRO - R \& D

 LEISURE PRODUCT ELECTRONICS LTDThis new company, formed within a well-known
U.K. Group to develop high technology electronic products, will command strong group financial and managerial support.

A senior hardware and software engineer is required with background, experience and qualifica tions in micro technology to speed the progress systems and dedicated microprocessor and communication devices.

This is an opportunity to join a powerfully backed new company with excellent prospects. Te salary will recognise we creative nature of the work and will be negotiable.

Apply (in confidence) to:
eisure Product Electronics Ltd
een Gate
Nottingham NG7 2ND

OUR AUTUMN COLLECTION

E9.500 - BERRS. DESIGN ENGIMEERS
 Eg,000 LONDON SOFTWARE ENGINEER
 E7,500 KENT GRADUATE ENGINEERS

E7,000 BERKS. RECRUITER
Mature persson with eleatronicics beackround to asisist ir recruiting specialist
Charles Airey Associates 13/16 Jacob's Well Mews, George Street, London W1

ELECTRONICS

SERVICE ENGINEER

 Audio Visual and Video well-known company requireBench Engineer to repair and maintain a wide range of professional TV and Video Equipment. Applicants pre--
ferably should be trained to City and Guilds Radio and ferably should be trained to City and Guild
Television standard with relevant experience Salary negotiable according to qualifications For interview please contact:

SAMUELSON. GIGHT \& SOUND LTD Tel: 01-452 8090, Ext. 262 Brompton Hospital

Medical Physics Technician (ELECTRONICS)

Technician is required to work in a small but busy departmen which provides a comprehensive emedical electronics/ physics
service at this leading postrgraduate cardiothoracic hospital. Wervin the department, the technician will be engaged mainly in
Within
electronics work unt the scientific o e engineering skills would be an advantage. In addition the technician will be required to work an advantage. In addition the technician will be required to work
in clinical areas, , rouble shooting and advising staft in the use of equipment.

NAD
Medical Research Counci

ELECTRONICS TECHNICIAN

 Applications in writing within the nexext two weeks, with CV and names of two refere

Tho Adminitrata

EAST HAM COLLEGE OF TECHNOLOGY High St South, London E6 4ER
Principal: K. R. BISHOP, B.Sc. (Econ.) FRSA DEPARTMENT OF LECTURER I IN
ELTURER IN
The person appointed to this post should be able to teach in one
The person appointed to this post should be able to teach in one
or more of the following areas at both Craft and Technician
a) Electrical Installation, Electrical Power

The minimum qualification acceptabse for this post is a City and
Guilds Full Technological Certificate in Electrical or Electronic Guilds Full Technological Certificate in Electrical or Electr
Engineering. Engineering.
Salary: $£ 5,034-£ 8,658$ plus $£ 759$ p.a. London Allowance. Further details and an application form may be obtained by writing to the vice-Principal enclosing a sell-adaressed enve
lope. Completed forms should be returned within 14 days of the ope. Completed forms should be
appearance of this advertisement.

Classified

Litauip Nent Ss4 Single Beam Oscliloscop
 MARTIN ASSOCIATE

 TEL: AvEBUAY (066 23) 219

SANGTRONIC LTD SUB-CONTRACT ENGINEERS
We specialise in PCB Assy,
Unit Assy, Cable harnessing
esting etc.
ALSO
We supply B.I.C.C. Equipmen Cable, Plain or colour code
to customers requiremen nd Passive Components. Fo
urther details please ring M

STAFF FOR TELEVISION STUDIOS AND TRANSMITTING
STATIONS

We have been requested to perating in the Middle East.

CHIEF ENGINEER

EXPERIENCE: Seven to 12 vears post-aualificataion experience on the

VIDEOTAPE ENGINEER

EXPERIENCE: Seven to nine years' post-qualification experience on the following: Videotape

STUDIO ENGINEER

TRANSMITTER ENGINEER

MICROWAVE ENGINEER

GENERATOR ENGINEER

EXPERIENCE: Five to nine years' post-qualification experience in TV Transmitter Equipment

QUALIFICATIONS Engineering degree, H.N.C., H.N.D. or equivalent.
CONDITIONS Excellent salary commensurate with experience. Free air-conditioned accomscheme, full insurance and medical care.
CONTRACT DURATION These contracts are offered for a period of three years on a bachelor basis only initially.
equest an application form for or send full c.v. to
CAL-ARABIAN U.K. LTD.
4 Kinnoull Street, Perth, Tayside - Telephone (0738) 25364

negotia Five figure salary,
Mullard Blackburn is producing the video disc for the Philips LaserVision system and requires a VTR Engineer to work in the mastering
area. This area transfers video programmes from tapes to master You will be responsible for the Vidideo Reproducing Equipment and ts performance. You should be familiar with the operation o
VPR2 and/or AVR2 machines, and have several years' relevan As part of Philips Industries, Mullard Blackburn offers usual large company facilities and a generous re
Blackburn is an industrial town in rural. Lancashire within 7 miles of the M6 and easy travelling distance to the Coast, Lake District,
Yorkshire and Derbyshire Dales. The larger centre of Manchester Please telephone or write to to Linley Murdock, Personnel Officer, Mullard Blackburn, Philips Road, Blackb
Lancashire, BB15RZ. Tel: (0254) 55241. Ext. 209

Mullard

THE
 ART OF ELECTRONICS
 by Horowitz \& Hil Price $£ 13.50$ THE PPL SYNTHESIZER COOK. BOOK, Ly H. Kinley Price: E5. 25 Book, by H. Kinley Prict. THE MC68. Warren Warren ICS... HOW Price: f5.00 DIGITAL AND HOW TO USE THEM, by A W. Barber ELECTHONC DESIGN Price THE SE.75 SHELF OTEGRATED CIR THE SHELF SUITS, by Z. H. Meiksin SXOLID STATE ELECTRO JECTS, by A. W. Barbe
 $$
\begin{aligned} & \text { ALL PRIICES } \\ & \text { INCLUDE POSTAGE } \end{aligned}
$$

THE MODERN BOOK CO.

 LONDON W2 1NP | Phone $402 \cdot 9176$ |
| :--- |
| Closed Sat. 1 P.m. |

YOUR NEXT ELECTRONIC PROJECT Choice of over 130 items of
netalwork, otc.. including 45 diferent printed. front panels, sub
rames, or a completem mixer
ranes nsole frame
For full details s.a.e. to.
The Mixer People
PARTRIDGE
ELECTRONICS
56 Fleet Rood
Essentilieot
SS7.
S.

 MEDICAL PHYSICS TECHNICIAN IVTwo vacancies sxist in the above Depart
hent for MPTs Grade V . 1. To ioin a team of physicists and
 To join a team of physicists and
technicicinn engased it many as
and
 Planning, ins eprod
ment moulds, etc.

BRITISH ANTARCTIC SURVEY RADIO OPERATOR TECHNICIAN

The British Antarctic Surver requires a Radio Operator Techn
cian to man a single-handed radio station at its permater cian to man a single-handed radio station at its permanen
Antarctic base be se signy Isand, South Orkneys for a period
appointment of 34 months appointment of 34 months commencing as soon as sossible. Applicants must be able to maintain SSB transmitting and re-
ceiving equipment and aerial systems. Communication between ceive Falkland Islands (ultimately the United Kingdom), other BAS
the
bases foreign An bases, foreign Antarctic
teleprinter and voice.
Qualifications: MRGC (or better) capable of sending and ceiving morse at at least 20 wpm, experience in maintenance of communication equipment is essential. A knowledge of
teleprinters and touch typing an advantage. Applications from amateur and armed service trained personnel will be consid-
ered, provided that the necessary expertise can be demonsered, provided that the necessary expertise can be demons-
trated. Applicants to work overseas,
$22-35$, physically fit and male.
Salary: from $\mathrm{f5} 510$ per annum plus an Antarctic technical
allowance of $£ 586$ per annum, clothing, messing allowance of $£ 586$ per annum, clothing, messing and canteen
are provided free on base and free messing on voyage. Low Income Tax
For further details and an application form please write to The Establishment Officer, British Antarctic Survey, High Cross,
Madingley Road, Cambridge, CB3 0 IT. Please quote ref: BAS 52 Mad
CLO
NATURAL ENVIRONMENT RESEARCH COUNCI

SENIOR TEST ENGINEER

METAL CASES

Price $£ 12.80$ inc. V.A.T.
Free p. \& p. in U.K.
M. GEAR LTD.

SURPLUS STOCK Omron Relays, Crouzet

 liming Motors, Crouzet MicrSwitches, Bulgin Lep and Switches, Bulgin Lep and
Panel Lampholders, Transfor-

Winted circuirs. Make yer

Classified

Electronic EngineersWhat you want, where you want!

TJB Electrotechnical Personnel Services is a specialised appointments service for electrical and electronic engineers. We have clients throughout the UK who urgently need technical staff at all levels from Junior Technician to Senior Management. Vacancies exist in all branches of electronics and allied disciplines - right through from design to marketing - at salary levels from around $£ 4000$ to $£ 12000$ p.a.
If you wish to make the most of your qualifications and experience and move another rung or two up the ladder we will be pleased to help you. All applications are treated in strict confidence and there is no danger of your present employer (or other companies you specify) being made aware of your application.

Name
Address.

The Hatfield Polytechnic

School of Humanities
 Senior Technician/ Chief Technician

required as soon as possible
Grade Technical $3 / 4$ ($(55,811-£ 7,296)$ or Technical 5
$(£ 7,530-£ 8,034)$ dependent upon qualifications and
experience.
Duties are mainly connected with three Language
Duties are mainly connected with experienced and
Laboratories. Applicants should be ext
well qualified in Electronics and be capable of servicing well qualified in Electronics and be capable of servicing
and repair of a wide variety of electrical and electrontic equipmentil tape recorders, amplififirs, etc. Duties will
include full responsibility for recording, cataloguing and include full responsibility for recording, cataloguing and
storing materials. This is a supervisory position, and close liaison with academic staff fis reanurired
Application forms and forther the Staffing
Officer, The Hattield Polytechnic, PO Box 109, College Application forms and
Officer, The Hatfield Po
Lane, Hattield, Herts.
Lane, Hatfield, Herts.
Please quote reference 444.
Closing date: 27 th November, 1981.

CAPACITY AVAILABLE

ELECTRONIC DESIGN SERVICEE
Immediate capacit avaluble for

COMPUTER APPRECIATION

86 High Street, Bletchingley, Redhill, Surrey RH1 4PA. Tel: Godstone (0883) 843221

 Nick

INDEX TO ADVERTISERS DECEMBER

Appointments Vacant Advertisements appear on pages 117-127

verseas ad́vertisement
France \&. Belgum: Norbert Hellin, 50 Rue de Chemin
Veat, F-900, Boulogne, Paris.

YOU'RE LOOKING AT 31 ANTEX SOLDERING IRONS!
 The secret is in the range of bits for each model, from 19 mm down to 0.5 mm ! No
 h screws to seize up - push-on bits which

 cover the elements to save time and energy.The new range of Anttex irons come ith or without safety plugs fitted.

[^0]: Als avalable from Electroplan

